Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

Type D and Type F activities

This information is intended exclusively for students already enrolled in this course.
If you are a new student interested in enrolling, you can find information about the course of study on the course page:

Laurea magistrale in Artificial Intelligence - Enrollment from 2025/2026

Type D learning activities are the student's choice, type F activities are additional knowledge useful for job placement (internships, transversal skills, project works, etc.). According to the Teaching Regulations of the Course, some activities can be chosen and entered independently in the booklet, others must be approved by a special committee to verify their consistency with the study plan. Type D or F learning activities can be covered by the following activities.

1. Modules taught at the University of Verona

Include the modules listed below and/or in the Course Catalogue (which can also be filtered by language of delivery via Advanced Search).

Booklet entry mode: if the teaching is included among those listed below, the student can enter it independently during the period in which the curriculum is open; otherwise, the student must make a request to the Secretariat, sending the form to carriere.scienze@ateneo.univr.it during the period indicated.

2. CLA certificate or language equivalency

In addition to those required by the curriculum/study plan, the following are recognized for those matriculated from A.Y. 2021/2022:

  • English language: 3 CFUs are recognized for each level of proficiency above that required by the course of study (if not already recognized in the previous course of study).
  • Other languages and Italian for foreigners: 3 CFUs are recognized for each proficiency level starting from A2 (if not already recognized in the previous study cycle).

These CFUs will be recognized, up to a maximum of 6 CFUs in total, of type F if the study plan allows it, or of type D. Additional elective credits for language knowledge may be recognized only if consistent with the student's educational project and if adequately justified.

Those enrolled until A.Y. 2020/2021 should consult the information found here.

Method of inclusion in the bookletrequest the certificate or equivalency from CLA and send it to the Student Secretariat - Careers for the inclusion of the exam in the career, by email: carriere.scienze@ateneo.univr.it

3. Transversal skills

Discover the training paths promoted by the University's TALC - Teaching and learning center intended for students regularly enrolled in the academic year of course delivery https://talc.univr.it/it/competenze-trasversali

Mode of inclusion in the booklet: the teaching is not expected to be included in the curriculum. Only upon obtaining the Open Badge will the booklet CFUs be automatically validated. The registration of CFUs in career is not instantaneous, but there will be some technical time to wait.  

4. Contamination lab

The Contamination Lab Verona (CLab Verona) is an experiential course with modules on innovation and enterprise culture that offers the opportunity to work in teams with students from all areas to solve challenges set by companies and organisations.  

Upon completion of a CLab, students will be entitled to receive 6 CFU (D- or F-type credits).  

Find out more:  https://www.univr.it/clabverona 

PLEASE NOTE: In order to be admitted to any teaching activities, including those of your choice, you must be enrolled in the academic year in which the activities in question are offered. Students who are about to graduate in the December and April sessions are therefore advised NOT to undertake extracurricular activities in the new academic year in which they are not enrolled, as these graduation sessions are valid for students enrolled in the previous academic year. Therefore, students who undertake an activity in an academic year in which they are not enrolled will not be granted CFU credits.  

5. Internship/internship period

In addition to the CFUs stipulated in the curriculum/study plan (check carefully what is indicated on the Teaching Regulationshere you can find information on how to activate the internship. 

Check in the regulations which activities can be Type D and which can be Type F.

Please also note that for traineeships activated after 1 October 2024, it will be possible to recognise excess hours in terms of type D credits limited only to traineeship experiences carried out at host organisations outside the University.

Academic year:

Teaching code

4S010688

Credits

6

Coordinator

Not yet assigned

Language

English en

Scientific Disciplinary Sector (SSD)

ING-INF/05 - INFORMATION PROCESSING SYSTEMS

Courses Single

Authorized

The teaching is organized as follows:

Teoria
The activity is given by AI and Robotics - Teoria of the course: Master's degree in Artificial intelligence

Credits

5

Period

Semester 2

Academic staff

Alessandro Farinelli

Laboratorio
The activity is given by AI and Robotics - Laboratorio of the course: Master's degree in Artificial intelligence

Credits

1

Period

Semester 2

Academic staff

Daniele Meli

Learning objectives

This course presents the main issues related to Artificial Intelligence techniques for mobile robotic platforms. The objective is to provide the students with the ability to design, apply and evaluate algorithms that allow mobile robotic platforms to interact with the surrounding environment by performing complex tasks with a high level of autonomy. At the end of the course the students must demonstrate to understand the fundamental concepts related to localization, trajectory planning, task planning, decision-making under uncertainty and machine learning in the context of mobile robotic platforms. Moreover, the students must demonstrate to be able to work with the main development tools for mobile robotic applications and to be able to define technical specifications for designing and integrating software modules for mobile robotic platforms. The students must also be able to deal with professional figures to design solutions for the high level control of mobile robotic platforms and to continue the studies independently following the technical evolution in the field of mobile robotics and developing innovative approaches to improve the state of the art.

Program

– Localization and mapping (e.g., recursive state estimation)
– Motion planning for mobile robots (e.g., path planning, obstacle avoidance);
– Decision-making under uncertainty (e.g., Markov Decision Process) .
– Reinforcement learning for mobile robotic platforms (e.g., model-based and model free approaches, Deep RL).
– Lab: implementation of autonomous behaviors for mobile robotic platforms using state of the art development toolkits (e.g., ROS2), simulation environments for empirical evaluation (e.g., Unity), validation on simple mobile platforms (e.g., turtlebot3).

Learning assessment procedures

The exam consists of an oral test focused on the laboratory activities and a second test that can be chosen between two options: i) a project focused on the implementation of some of the techniques studied during the course; ii) an oral exam focused on the topics studied during the course.

Students with disabilities or specific learning disorders (SLD), who intend to request the adaptation of the exam, must follow the instructions given HERE