Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Type D and Type F activities
Nei piani didattici di ciascun Corso di studio è previsto l’obbligo di conseguire un certo numero di crediti formativi mediante attività a scelta (chiamate anche "di tipologia D e F").
Oltre che in insegnamenti previsti nei piani didattici di altri corsi di studio e in certificazioni linguistiche o informatiche secondo quanto specificato nei regolamenti di ciascun corso, tali attività possono consistere anche in iniziative extracurriculari di contenuto vario, quali ad esempio la partecipazione a un seminario o a un ciclo di seminari, la frequenza di laboratori didattici, lo svolgimento di project work, stage aggiuntivo, eccetera.
Come per ogni altra attività a scelta, è necessario che anche queste non costituiscano un duplicato di conoscenze e competenze già acquisite dallo studente.
Quelle elencate in questa pagina sono le iniziative extracurriculari che sono state approvate dalla Commissione didattica e quindi consentono a chi vi partecipa l'acquisizione dei CFU specificati, alle condizioni riportate nelle pagine di dettaglio di ciascuna iniziativa.
Si ricorda in proposito che:
- tutte queste iniziative richiedono, per l'acquisizione dei relativi CFU, il superamento di una prova di verifica delle competenze acquisite, secondo le indicazioni contenute nella sezione "Modalità d'esame" della singola attività;
- lo studente è tenuto a inserire nel proprio piano degli studi l'attività prescelta e a iscriversi all'appello appositamente creato per la verbalizzazione, la cui data viene stabilita dal docente di riferimento e pubblicata nella sezione "Modalità d'esame" della singola attività.
Scopri i percorsi formativi promossi dal Teaching and learning centre dell'Ateneo, destinati agli studenti iscritti ai corsi di laurea, volti alla promozione delle competenze trasversali: https://talc.univr.it/it/competenze-trasversali
CONTAMINATION LAB
Il Contamination Lab Verona (CLab Verona) è un percorso esperienziale con moduli dedicati all'innovazione e alla cultura d'impresa che offre la possibilità di lavorare in team con studenti e studentesse di tutti i corsi di studio per risolvere sfide lanciate da aziende ed enti. Il percorso permette di ricevere 6 CFU in ambito D o F. Scopri le sfide: https://www.univr.it/it/clabverona
----------------------------------------------------------------------
ATTENZIONE: Per essere ammessi a sostenere una qualsiasi attività didattica, incluse quelle a scelta, è necessario essere iscritti all'anno di corso in cui essa viene offerta. Si raccomanda, pertanto, ai laureandi delle sessioni di dicembre e aprile di NON svolgere attività extracurriculari del nuovo anno accademico, cui loro non risultano iscritti, essendo tali sessioni di laurea con validità riferita all'anno accademico precedente. Quindi, per attività svolte in un anno accademico cui non si è iscritti, non si potrà dar luogo a riconoscimento di CFU.
years | Modules | TAF | Teacher |
---|---|---|---|
1° 2° | B-education: Sound ideas | D |
Cristina Florio
(Coordinator)
|
1° 2° | B-education: Sound ideas | D |
Cristina Florio
(Coordinator)
|
1° 2° | Ciclo tematico di conferenze “Italia nel mondo” - 2024/2025 | D |
Riccardo Stacchezzini
(Coordinator)
|
1° 2° | Ethical finance | D |
Giorgio Mion
(Coordinator)
|
1° 2° | Generative AI (Artificial Intelligence) for Business Communication | D |
Massimo Melchiori
(Coordinator)
|
years | Modules | TAF | Teacher |
---|---|---|---|
1° 2° | Methods and tools for literature reviews | D |
Cristina Florio
(Coordinator)
|
1° 2° | Sustainable business model frameworks | D |
Vincenzo Riso
(Coordinator)
|
1° 2° | Experience 3 Days as a Manager | D |
Nicola Cobelli
(Coordinator)
|
years | Modules | TAF | Teacher |
---|---|---|---|
1° 2° | Data Analysis Laboratory with R (Verona) | D |
Marco Minozzo
(Coordinator)
|
1° 2° | Data Visualization Laboratory | D |
Marco Minozzo
(Coordinator)
|
1° 2° | Python Laboratory | D |
Marco Minozzo
(Coordinator)
|
1° 2° | Data Science Laboratory with SAP | D |
Marco Minozzo
(Coordinator)
|
1° 2° | Advanced Excel Laboratory (Verona) | D |
Marco Minozzo
(Coordinator)
|
1° 2° | Excel Laboratory (Verona) | D |
Marco Minozzo
(Coordinator)
|
1° 2° | Methods and tools for empirical research in management | D |
Nicola Cobelli
(Coordinator)
|
1° 2° | Methods and tools for empirical research in management | D |
Nicola Cobelli
(Coordinator)
|
1° 2° | Plan your professional future | D |
Paolo Roffia
(Coordinator)
|
1° 2° | Plan your professional future | D |
Paolo Roffia
(Coordinator)
|
1° 2° | Marketing plan | D |
Fabio Cassia
(Coordinator)
|
1° 2° | Programming in Matlab | D |
Marco Minozzo
(Coordinator)
|
1° 2° | Programming in SAS | D |
Marco Minozzo
(Coordinator)
|
years | Modules | TAF | Teacher |
---|---|---|---|
1° 2° | Artificial Intelligence, AI and Business Operations: Methods and Techniques | D |
Lapo Mola
(Coordinator)
|
1° 2° | The business consultant accountant | D |
Riccardo Stacchezzini
(Coordinator)
|
1° 2° | Relational soft skills for professional presence | D |
Federico Brunetti
(Coordinator)
|
years | Modules | TAF | Teacher |
---|---|---|---|
1° 2° | French B1 | D | Not yet assigned |
1° 2° | French B2 | D | Not yet assigned |
1° 2° | English C1 | D | Not yet assigned |
1° 2° | Russian B1 | D | Not yet assigned |
1° 2° | Russian B2 | D | Not yet assigned |
1° 2° | Spanish B1 | D | Not yet assigned |
1° 2° | Spanish B2 | D | Not yet assigned |
1° 2° | German B1 | D | Not yet assigned |
1° 2° | German B2 | D | Not yet assigned |
Logistic optimization (2024/2025)
Teaching code
4S012439
Academic staff
Coordinator
Credits
9
Language
Italian
Scientific Disciplinary Sector (SSD)
MAT/09 - OPERATIONS RESEARCH
Period
Secondo semestre LM dal Feb 17, 2025 al May 23, 2025.
Courses Single
Authorized
Learning objectives
Aim of this course is to lead students to be able to understand the basic notions and tools of Operations Research in support of the strategic and operational planning of companies, with a particular emphasis to the optimisation of cost and margins regarding the logistics of transport of goods.
At the end of the course, students will have to show the knowledge and the ability to understand the main optimisation methods of Operations Research. They will also have to show the ability to understand, analyse and implement, also by means of specific software, the optimisation models suitable for solving relevant decision-making problems in the field of the logistics of transport of goods.
Prerequisites and basic notions
Basic knowledge of analysis (numbers, sets, functions), algebra and calculus (equations and unknowns, solution of systems of linear equations), analytical geometry (Cartesian coordinates, straight line and plane equations), linear algebra (vectors and matrices) calculus differential and integral.
Program
The course program will focus on optimization techniques for logistics and supply chain management problems. Various practical applications will be addressed in the form of case studies. In particular, we will initially focus on the basics of optimization and mathematical modeling of a logistics problem, providing various examples; we will then address more specific problems such as: the localization of nodes, the management of warehouses, transport, vehicle routing problems and supplier management. The various problems will be analyzed through the guided use of dedicated software both in terms of mathematical optimization aspects and data analysis and forecasts.
In what follows the detail of the course contents:
*Introduction to logistics optimization: Overview of problems in logistics and supply chain management; introduction to optimization techniques; applications of logistics optimization.
*Linear programming and optimization paradigms: basic notions of Linear Programming, notes on solution methods for PL (simplex), Mixed Integer Linear Programming, modeling techniques, mathematical formulation of constraint structures and notable problems. Multi-Criterion and Multiobjective Optimization, Lagrangian relaxation.
*Localization of logistics nodes: Qualitative and quantitative localization methods, continuous and discrete localization problems, multi-product and coverage problems.
*Warehouse management: Performance metrics and decision issues, warehouse design and equipment selection, storage and picking strategies.
*Transportation Management: Transportation modes and classification of transportation problems, least cost flow problems, traffic assignment and network design.
*Vehicle Routing Problems (VRP): Traveling Salesman Problem (TSP) and VRP variants, capacity and time constraints in vehicle routing, real-time vehicle routing problems.
*Integrated optimization problems: Integrated localization and routing problems, inventory-routing problems.
*Supplier management: Supplier search and selection criteria, supplier evaluation and decision making, supplier evaluation and decision making.
*Forecasting and data analysis in logistics: Qualitative and quantitative methods for data analysis, time series analysis and forecasting.
*Software tools for logistics optimization: Introduction and use of software dedicated to logistics optimization (e.g., Python programming language, and the Gurobi solver).
Optional topics:
- Stochastic models in logistics (stochastic optimization techniques, queuing theory and Markov decision processes).
- Heuristic and meta-heuristic methods, genetic algorithms, simulated annealing and applications.
Bibliography
Didactic methods
Lectures with slides, teacher's notes and hand-on sessions in the classroom.
Learning assessment procedures
Written and oral with the possibility of supplementing the examination with a project and exercises during the course.
To pass the exam, students must demonstrate that:
- They have understood the principles underlying optimization techniques applied to logistics problems.
- They are able to present arguments on the topics of the course in a precise and organic way.
- They know how to apply the knowledge acquired to solve application problems presented in the form of exercises, questions and projects.
Evaluation criteria
Discussed and agreed with the aim that they can be both fair and reasonable.
Criteria for the composition of the final grade
Average of written and oral mark, and possible integration of the grade with the carrying out of projects and exercises.
Exam language
Italiano