Studiare

In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.

A.A. 2011/2012

Calendario accademico

Il calendario accademico riporta le scadenze, gli adempimenti e i periodi rilevanti per la componente studentesca, personale docente e personale dell'Università. Sono inoltre indicate le festività e le chiusure ufficiali dell'Ateneo.
L’anno accademico inizia il 1° ottobre e termina il 30 settembre dell'anno successivo.

Calendario accademico

Calendario didattico

Il calendario didattico indica i periodi di svolgimento delle attività formative, di sessioni d'esami, di laurea e di chiusura per le festività.

Definizione dei periodi di lezione
Periodo Dal Al
Primo semestre 26-set-2011 22-dic-2011
Secondo semestre 27-feb-2012 25-mag-2012
Sessioni degli esami
Sessione Dal Al
Sessione invernale 9-gen-2012 24-feb-2012
Sessione saperi minimi logico-matematici (aprile) 1-apr-2012 30-apr-2012
Sessione estiva 28-mag-2012 6-lug-2012
Sessione autunnale 27-ago-2012 21-set-2012
Sessioni di lauree
Sessione Dal Al
Sessione autunnale 24-nov-2011 25-nov-2012
Sessione invernale 11-apr-2012 13-apr-2012
Sessione estiva 26-lug-2012 27-dic-2012
Vacanze
Periodo Dal Al
Liberazione 25-apr-2011 25-apr-2011
Festa di Ognissanti 1-nov-2011 1-nov-2011
Immacolata 8-dic-2011 8-dic-2011
Vacanze natalizie 23-dic-2011 6-gen-2012
Vacanze Pasquali 5-apr-2012 10-apr-2012
Festa dei Lavoratori 1-mag-2012 1-mag-2012
Festa della Repubblica 2-giu-2012 2-giu-2012
Vacanze estive 8-ago-2012 15-ago-2012
Ricorrenza del Santo Patrono (Vicenza) 8-set-2012 8-set-2012

Calendario esami

Gli appelli d'esame sono gestiti dalla Unità Operativa Segreteria dei Corsi di Studio Economia.
Per consultazione e iscrizione agli appelli d'esame visita il sistema ESSE3.
Per problemi inerenti allo smarrimento della password di accesso ai servizi on-line si prega di rivolgersi al supporto informatico della Scuola o al servizio recupero credenziali

Calendario esami

Per dubbi o domande leggi le risposte alle domande più frequenti F.A.Q. Iscrizione Esami

Docenti

B C D F G L M N O P R S T

Bombieri Nicola

nicola.bombieri@univr.it +39 045 802 7094

Brunetti Federico

federico.brunetti@univr.it 045 802 8494

Cantele Silvia

silvia.cantele@univr.it 045 802 8220 (VR) - 0444 393943 (VI)

Corsi Corrado

corrado.corsi@univr.it 045 802 8452 (VR) 0444/393937 (VI)

De Crescenzo Veronica

veronica.decrescenzo@univr.it 045 802 8163

Duret Paolo

paolo.duret@univr.it 0458028873

Faccincani Lorenzo

lorenzo.faccincani@univr.it 045 802 8610

Farinon Paolo

paolo.farinon@univr.it 045 802 8169 (VR) 0444/393939 (VI)

Fiorentini Riccardo

riccardo.fiorentini@univr.it 0444 393934 (VI) - 045 802 8335(VR)

Fioroni Tamara

tamara.fioroni@univr.it 0458028489

Giacomello Bruno

bruno.giacomello@univr.it 0444 393933 (VI)

Lassini Ugo

ugo.lassini@univr.it

Levati Maria Vittoria

vittoria.levati@univr.it 045 802 8640

Lionzo Andrea

andrea.lionzo@univr.it

Mola Lapo

lapo.mola@univr.it 045/8028565

Novello Diego

avv.novello@studionovelloepartners.it

Omodei Sale' Riccardo

riccardo.omodeisale@univr.it 045 802 8855

Ortoleva Maria Grazia

mariagrazia.ortoleva@univr.it 045 802 8052

Peretti Alberto

alberto.peretti@univr.it 0444 393936 (VI) 045 802 8238 (VR)

Pertile Paolo

paolo.pertile@univr.it 045 802 8438

Pichler Flavio

flavio.pichler@univr.it 045 802 8273

Ricciuti Roberto

roberto.ricciuti@univr.it 0458028417

Rossi Francesco

francesco.rossi@univr.it 045 8028067

Russo Ivan

ivan.russo@univr.it 045 802 8161 (VR)

Signori Paola

paola.signori@univr.it 0444 393942 (VI) 045 802 8492 (VR)

Sommacal Alessandro

alessandro.sommacal@univr.it 045 802 8716

Tondini Giovanni

giovanni.tondini@univr.it Verona: 045 8425449, Vicenza: 0444 393930

Trabucchi Giuseppe

giuseppe.trabucchi@univr.it

Turazza Michele

michele.turazza@univr.it 0458028264

Piano Didattico

Il piano didattico è l'elenco degli insegnamenti e delle altre attività formative che devono essere sostenute nel corso della propria carriera universitaria.
Selezionare il piano didattico in base all'anno accademico di iscrizione.

InsegnamentiCreditiTAFSSD
9
B
(SECS-P/01)
9
B
(SECS-S/01)
9
B
(SECS-P/03)

2° Anno

InsegnamentiCreditiTAFSSD
9
B
(SECS-P/01)
9
B
(SECS-S/01)
9
B
(SECS-P/03)

3° Anno

InsegnamentiCreditiTAFSSD
9
B
(SECS-P/01)
6
B
(SECS-P/08)
6
S
(-)
Prova finale
3
E
(-)
Insegnamenti Crediti TAF SSD
Tra gli anni: 1°- 2°- 3°

Legenda | Tipo Attività Formativa (TAF)

TAF (Tipologia Attività Formativa) Tutti gli insegnamenti e le attività sono classificate in diversi tipi di attività formativa, indicati da una lettera.




SStage e tirocini presso imprese, enti pubblici o privati, ordini professionali

Codice insegnamento

4S00121

Crediti

9

Coordinatore

Annamaria Guolo

Settore Scientifico Disciplinare (SSD)

SECS-S/01 - STATISTICA

Lingua di erogazione

Italiano

L'insegnamento è organizzato come segue:

lezione

Crediti

7

Periodo

Primo semestre

esercitazione

Crediti

2

Periodo

Primo semestre

Obiettivi formativi

Il corso si propone di fornire le tecniche di base della statistica descrittiva, del calcolo delle probabilità e della statistica inferenziale a studenti di corsi di laurea in discipline economiche ed aziendali che abbiano già acquisito le indispensabili nozioni di matematica fornite con gli insegnamenti di base. Le tecniche statistiche che saranno illustrate hanno lo scopo di fornire una metodologia di analisi quantitativa utile a fini descrittivi, interpretativi e decisionali, fondata sulla osservazione, sulla rilevazione e sulla elaborazione dei fenomeni collettivi. Da un punto di vista applicativo, queste tecniche sono indispensabili nell'interpretazione delle informazioni statistiche ufficiali e nella realizzazione di indagini statistiche di fenomeni economici e sociali. Oltre a fornire la strumentazione statistico-matematica, il corso si pone l’obiettivo di fornire anche gli strumenti concettuali necessari per una valutazione critica delle metodologie proposte.

Programma

a) Statistica descrittiva

Concetti introduttivi; fenomeni collettivi; popolazione, campione, unità statistica; indagini censuarie e campionarie; questionari; raccolta, spoglio e classificazione dei dati; caratteri qualitativi e quantitativi; caratteri trasferibili; fenomeni di movimento e stato; fonti statistiche.
Tipi di dati statistici; matrice dei dati; distribuzioni statistiche semplici, doppie, multiple, unitarie, di frequenza assoluta e relative, pesate, di quantità; rappresentazioni grafiche.
Frequenze cumulate; funzione di ripartizione.
Sommatorie semplici e doppie; produttorie.
Indici di posizione; medie potenziate; media aritmetica; media armonica; media geometrica; proprietà della media aritmetica; media di una trasformazione lineare e del miscuglio; media quadratica; media cubica; medie lasche; moda; mediana; quartili, decili, percentili e quantili.
Indici di variabilità; campo di variazione; differenza interquartile; varianza e scarto quadratico medio; varianza di una trasformazione lineare e del miscuglio; standardizzazione; coefficiente di variazione.
Momenti dall’origine e momenti centrali; asimmetria e indici di asimmetria; curtosi e misure di curtosi.
Numeri indici a base fissa e a base mobile; variazioni relative e variazione media relativa; indici di Laspeyres e di Paasche.
Distribuzioni doppie o multiple, unitarie e di frequenza; media aritmetica della somma di più variabili; media aritmetica del prodotto di due variabili; covarianza; varianza della somma di più variabili; distribuzioni condizionate; media e varianza condizionata; indipendenza; indice di dipendenza chi-quadrato; indice di connessione C.
Interpolazione statistica; metodo dei minimi quadrati; retta dei minimi quadrati per distribuzioni doppie unitarie e di frequenza; minimi quadrati per funzioni riconducibili a una retta; coefficiente di correlazione lineare r; disuguaglianza di Cauchy-Schwarz; coefficiente di determinazione R2; decomposizione della devianza totale.

b) Probabilità

Modelli deterministici e probabilistici; eventi elementari e spazio campionario; alberi degli eventi; eventi aleatori.
Elementi di calcolo combinatorio.
Definizione assiomatica della probabilità; funzione di probabilità; spazi di probabilità; interpretazioni della probabilità; primi teoremi sulla probabilità.
Probabilità condizionata; legge del prodotto; indipendenza stocastica tra eventi; formula delle probabilità totali; teorema di Bayes.
Variabili aleatorie; funzione di ripartizione; variabili aleatorie discrete e continue; distribuzione di probabilità e funzione di densità; trasformate di variabili aleatorie; valore atteso e varianza; disuguaglianza di Markov e disuguaglianza di Tchebycheff.
Particolari distribuzioni discrete: uniforme, Bernoulli, binomiale, Poisson.
Particolari distribuzioni continue: rettangolare, normale.
Variabili aleatorie doppie discrete; funzione di ripartizione e distribuzione di probabilità congiunta; distribuzioni di probabilità marginali e condizionate; indipendenza tra variabili aleatorie; valore atteso di una funzione di variabili aleatorie; covarianza; coefficiente di correlazione di Bravais; valore atteso condizionato e varianza condizionata.
Combinazioni lineari di variabili aleatorie; media campionaria di variabili aleatorie indipendenti; somma di variabili aleatorie normali indipendenti.
Legge (debole) dei grandi numeri.
Teorema del limite centrale.

c) Statistica inferenziale

Inferenza statistica; campione casuale; variabilità campionaria.
Statistica campionaria: media campionaria, frequenza relativa campionaria, varianza campionaria. Distribuzione campionaria.
Stima puntuale e stimatore: significato; esempi di stima.
Proprietà degli stimatori: correttezza, efficienza, consistenza, distorsione asintotica.
Stima della media e della varianza di una popolazione normale; stima di una proporzione di una popolazione dicotomica.
Intervalli di confidenza: significato e interpretazione.
Intervallo di confidenza per la media di una popolazione normale, con varianza nota e con varianza incognita (variabile t di Student).
Intervallo di confidenza per una media (grandi campioni).
Intervallo di confidenza per la varianza di una popolazione normale, con media nota e con media incognita. (variabile chi-quadrato).
Intervallo di confidenza per la proporzione di una popolazione dicotomica (grandi campioni).
Verifica d'ipotesi: significato, interpretazione, test unilaterale e bilaterale, errori di primo e secondo tipo, potenza di un test.
Verifica d'ipotesi sulla media di un popolazione normale con varianza nota e incognita, sulla varianza di una popolazione normale con media nota e incognita, sulla proporzione di una popolazione dicotomica (grandi campioni),.
Verifica d'ipotesi per il confronto tra due proporzioni (grandi campioni), tra due medie (con variante note o ignote ma uguali) e tra due varianze (F di Snedecor) di popolazioni normali.

Libro di testo

- G. CICCHITELLI (2008), Statistica: principi e metodi, Pearson Education, Milano.

Materiale integrativo distribuito a cura del docente

Testi di approfondimento

- D. PICCOLO (1998), Statistica, Seconda edizione 2000. Il Mulino, Bologna.
- D. PICCOLO (2010), Statistica per le decisioni, Nuova edizione. Il Mulino, Bologna.
- D. OLIVIERI (2003), Temi svolti di statistica, Seconda edizione aggiornata al 2002. Cedam, Padova.
- D. OLIVIERI (2005), Istituzioni di statistica. Cedam, Padova.
– D. OLIVIERI (2007), Fondamenti di statistica, Terza edizione. Cedam, Padova.
- E. BATTISTINI (2004), Probabilità e statistica: un approccio interattivo con Excel. McGraw-Hill, Milano.
- S. BERNSTEIN, R. BERNSTEIN (2003), Statistica descrittiva, Collana Schaum's, numero 109. McGraw-Hill, Milano.
- S. BERNSTEIN, R. BERNSTEIN (2003), Calcolo delle probabilita', Collana Schaum's, numero 110. McGraw-Hill, Milano.
- S. BERNSTEIN, R. BERNSTEIN (2003), Statistica inferenziale, Collana Schaum's, numero 111. McGraw-Hill, Milano.
- F. P. BORAZZO, P. PERCHINUNNO (2007), Analisi statistiche con Excel. Pearson, Education.
- M. R. MIDDLETON (2004), Analisi statistica con Excel. Apogeo.

Guida allo studio

Il corso si compone di 56 ore di lezione (7 CFU) e 24 ore di esercitazione (2 CFU). Gli studenti non frequentanti possono rivolgersi al docente per avere indicazioni riguardo al programma. Si consiglia di seguire le lezioni e le esercitazioni e di prendere regolarmente gli appunti.

Conoscenze preliminari

Per seguire con profitto il corso non sono richieste particolari conoscenze preliminari di matematica. Si assumono per date le nozioni acquisite con gli insegnamenti di base, in particolare le nozioni di limite, derivata e integrale.

Esercitazioni

Fanno parte integrante del corso una serie di esercitazioni. Materiale utilizzato durante le esercitazioni sarà reso disponibile online. Le esercitazioni sono indispensabili per una adeguata comprensione degli argomenti del corso.

Modalità d'esame

L'esame consiste in una prova scritta suddivisa tra un test con domande a risposta chiusa ed alcuni esercizi, per la durata complessiva di circa 2 ore e trenta minuti. Saranno ammessi ad una prova orale (facoltativa) solamente gli studenti che avranno riportato un voto maggiore od uguale a 15/30 sia nella prova basata sugli esercizi che nel test. Per l'esame si potrà usare solamente una calcolatrice e non sarà consentito utilizzare nessun altro materiale (libri, appunti, ecc.). Le tavole statistiche saranno fornite in sede d'esame. Per sostenere l'esame lo studente deve presentarsi munito di tessera universitaria, di libretto universitario, oppure di idoneo documento di riconoscimento.

Bibliografia

Testi di riferimento
Attività Autore Titolo Casa editrice Anno ISBN Note
lezione M. R. Middleton Analisi statistica con Excel Apogeo, Milano 2004
lezione F. P. Borazzo, P. Perchinunno Analisi statistiche con Excel Pearson, Education 2007
lezione S. Bernstein, R. Bernstein Calcolo delle Probabilita', Collana Schaum's, numero 110. McGraw-Hill, Milano 2003
lezione D. OLIVIERI Fondamenti di statistica (Edizione 3) Cedam, Padova 2007
lezione D. OLIVIERI Istituzioni di statistica CEDAM 2005
lezione E. Battistini Probabilità e statistica: un approccio interattivo con Excel McGraw-Hill, Milano 2004
lezione D. Piccolo Statistica Il Mulino 2000 8815075968
lezione S. Bernstein, R. Bernstein Statistica descrittiva, Collana Schaum's, numero 109 McGraw-Hill, Milano 2003
lezione S. Bernstein, R. Bernstein Statistica inferenziale, Collana Schaum's, numero 111. McGraw-Hill, Milano 2003
lezione D. Piccolo Statistica per le decisioni Il Mulino 2004 8815097708
lezione G. Cicchitelli Statistica: principi e metodi (Edizione 2) Pearson Italia, Milano 2012 Libro di testo
lezione D. OLIVIERI Temi svolti di statistica (2001-2007) Cedam, Padova 2008

Tipologia di Attività formativa D e F

Insegnamenti non ancora inseriti

Prospettive


Avvisi degli insegnamenti e del corso di studio

Per la comunità studentesca

Se sei già iscritta/o a un corso di studio, puoi consultare tutti gli avvisi relativi al tuo corso di studi nella tua area riservata MyUnivr.
In questo portale potrai visualizzare informazioni, risorse e servizi utili che riguardano la tua carriera universitaria (libretto online, gestione della carriera Esse3, corsi e-learning, email istituzionale, modulistica di segreteria, procedure amministrative, ecc.).
Entra in MyUnivr con le tue credenziali GIA.

Tirocini e stage

Nel piano didattico dei Corsi di Laurea triennale (CdL) e Magistrale (CdLM) offerti dalla Scuola di Economia e Management dell’Università di Verona è previsto uno stage come attività formativa obbligatoria. Lo stage, infatti, è ritenuto uno strumento appropriato per acquisire competenze e abilità professionali e per agevolare la scelta dello sbocco professionale futuro, in linea con le proprie aspettative, attitudini e aspirazioni. Attraverso l’esperienza pratica in ambiente lavorativo, lo studente può acquisire ulteriori competenze ed abilità relazionali.

Per informazioni specifiche, consultare l'highlight della Scuola di Economia e Management appositamente dedicato a Stage.

Gestione carriere


Tutorato per gli studenti

I docenti dei singoli Corsi di Studio erogano un servizio di tutorato volto a orientare e assistere gli studenti del triennio, in particolare le matricole, per renderli partecipi dell’intero processo formativo, con l’obiettivo di prevenire la dispersione e il ritardo negli studi, oltre che promuovere una proficua partecipazione attiva alla vita universitaria in tutte le sue forme.

Esercitazioni Linguistiche CLA


Prova finale

La prova finale, il cui superamento attribuisce 3 CFU, consiste in un elaborato in forma scritta di almeno 30 cartelle, che approfondisce un tema a scelta relativo a uno degli insegnamenti previsti dal piano didattico dello studente. Il tema e il titolo dell’elaborato dovranno essere selezionati in accordo con un docente dell’Ateneo di un SSD fra quelli presenti nel piano didattico dello studente. Il lavoro deve essere sviluppato sotto la guida del docente. L’elaborato è oggetto di esposizione e discussione orale dinanzi a una Commissione Istruttoria, composta dal docente di cui al comma precedente, in qualità di Relatore, e da un secondo docente appartenente al medesimo settore scientifico-disciplinare o a settore affine. La discussione si svolge in una data concordata con il Relatore, di norma in occasione di una qualsiasi sessione d’esame. Con il consenso del Relatore, la tesi può essere redatta e la discussione svolgersi in lingua inglese. La scelta del tema e del titolo dell’elaborato e lo svolgimento della discussione a norma dei commi precedenti possono essere effettuate a partire dall’inizio dell’ultimo anno di corso, e comunque solo dopo l’acquisizione in carriera di almeno 120 CFU. Valutati la qualità dell’elaborato e della sua presentazione e discussione da parte dello studente, la Commissione Istruttoria formula una proposta di giudizio, che può essere positiva o negativa: nel primo caso, essa è accompagnata da una proposta di punteggio, da un minimo di 0 a un massimo di 4 punti; nel secondo caso, è accompagnata dall’indicazione al laureando di opportuni suggerimenti migliorativi. La proposta di punteggio non deve in alcun modo tener conto della carriera del laureando. La determinazione del punteggio finale e il conferimento del titolo sono di esclusiva competenza della Commissione di Laurea, composta secondo quanto stabilito dal RDA. È possibile conseguire la laurea anche in un tempo inferiore a tre anni, fermi restando gli obblighi contributivi per tutta la durata legale del corso.

Per maggiori informazioni e la consultazione delle scadenze e delle commissioni di laurea si rimanda all'apposita sezione del sito web della Scuola di Economia e Management
 

Area riservata studenti


Ulteriori servizi

I servizi e le attività di orientamento sono pensati per fornire alle future matricole gli strumenti e le informazioni che consentano loro di compiere una scelta consapevole del corso di studi universitario.