Studiare
In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.
Piano Didattico
Il piano didattico è l'elenco degli insegnamenti e delle altre attività formative che devono essere sostenute nel corso della propria carriera universitaria.
Selezionare il piano didattico in base all'anno accademico di iscrizione.
1° Anno
Insegnamenti | Crediti | TAF | SSD |
---|
2° Anno Attivato nell'A.A. 2016/2017
Insegnamenti | Crediti | TAF | SSD |
---|
Due insegnamenti a scelta tra i seguenti
Due insegnamenti a scelta tra i seguenti
Insegnamenti | Crediti | TAF | SSD |
---|
Insegnamenti | Crediti | TAF | SSD |
---|
Due insegnamenti a scelta tra i seguenti
Due insegnamenti a scelta tra i seguenti
Insegnamenti | Crediti | TAF | SSD |
---|
Legenda | Tipo Attività Formativa (TAF)
TAF (Tipologia Attività Formativa) Tutti gli insegnamenti e le attività sono classificate in diversi tipi di attività formativa, indicati da una lettera.
Econometrics (2015/2016)
Codice insegnamento
4S02464
Docente
Coordinatore
Crediti
9
Lingua di erogazione
Inglese
Settore Scientifico Disciplinare (SSD)
SECS-P/05 - ECONOMETRIA
Periodo
primo semestre dal 28 set 2015 al 8 gen 2016.
Obiettivi formativi
The course provides an overview of the main econometric tools, with particular emphasis on economic applications, developed interactively in class using the professional software Stata™.
After a short introduction on the purpose of Econometrics and the basic commands in Stata, the program is divided in four parts. The first part (OLS) introduces to the standard econometric method, i.e., ordinary least squares (OLS) regression. The second part (OLS diagnostics) presents diagnostic tests on heteroskedasticity, autocorrelation and wrong specification of the functional form. The third part (IV) discusses the problem of endogeneity and the instrumental variable estimators. The fourth part (extensions) introduces micro-econometric models suited for panel data (random effects, fixed effects), for binary dependent variables (probit, logit), and for limited dependent variables (truncated regression, tobit).
Programma
1) Introduction
1.1) What is Econometrics?
Definition; cross-section, time series and panel data.
1.2) Stata tutorial
Data management; basic statistics; graphics.
2) Ordinary Least Squares (OLS) Estimator
2.1) Introduction
Univariate and multivariate regression; marginal effects and elasticity.
Example: House prices
2.2) Goodness of fit
R2, adjusted R2, AIC and BIC criteria; forecast; outliers.
Example: Forecasting stock returns
2.3) Properties
Gauss-Markov assumptions; unbiasedness; efficiency; consistency; asymptotic normality.
2.4) Testing
t-test on one restriction; F test on several restrictions.
Example: Capital asset pricing model
3) OLS Diagnostics
3.1) Specification
Collinearity; superfluous and omitted variables; RESET test of specification; Chow test of structural stability.
3.2) Heteroscedasticity
White test and Breusch-Pagan test; White robust standard errors.
Example: Risk profile
3.3) Autocorrelation
Durbin-Watson test and Breusch-Godfrey test; Newey-West robust standard errors.
Example: Ice cream consumption
4) Instrumental Variable (IV) Estimator
4.1) Motivation
Autocorrelation and lagged dependent variable; measurement error; omitted variables; simultaneity.
4.2) Estimator
Assumptions; Simple instrumental variable (SIV) and generalized instrumental variable (GIV); properties; two-stage derivation (2SLS).
Example: Women wage function
4.3) Instrument selection
Relevance test; weak instruments; Sargan validity test; Hausman exogeneity test.
Example: Returns to schooling
5) Extensions (Microeconometrics)
5.1) Panel data
Pooled effects, fixed effects and random effects; goodness of fit; comparison tests.
Example: Waste sorting
5.2) Binary dependent variable
Linear probability model (LPM); probit and logit models; marginal effects; maximum likelihood estimate; goodness of fit; hypothesis testing.
Example: Bus tickets
5.3) Limited dependent variable
Truncated regression; Tobit models; marginal effects; hypothesis testing.
Suggested material:
- Course slides, available on eLearning.
- Verbeek, M., A Guide to Modern Econometrics, Wiley, 2000 or following editions.
Modalità d'esame
The exam is written. The final grade is based on one mandatory final exam and one voluntary homework (assigned in the middle of the semester).
The final exam includes theoretical, numerical and applied exercises on all the topics covered in class; the homework includes theoretical and applied exercises on the topics covered in the first half of the class meetings. Applied exercises require the use of Stata.
During the final exam it will be allowed the use of handheld calculators, but not the use of textbooks or teaching notes.
The homework adds 1 bonus point to the final grade and accounts for 10% of the final grade.