Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Study Plan
This information is intended exclusively for students already enrolled in this course.If you are a new student interested in enrolling, you can find information about the course of study on the course page:
Laurea in Scienze e tecnologie viticole ed enologiche - Enrollment from 2025/2026The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.
1° Year
Modules | Credits | TAF | SSD |
---|
2° Year activated in the A.Y. 2014/2015
Modules | Credits | TAF | SSD |
---|
3° Year activated in the A.Y. 2015/2016
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Legend | Type of training activity (TTA)
TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.
Mathematics and statistics - MATEMATICA (2013/2014)
Teaching code
4S02690
Teacher
Credits
6
Language
Italian
Scientific Disciplinary Sector (SSD)
MAT/05 - MATHEMATICAL ANALYSIS
Period
I semestre dal Oct 1, 2013 al Jan 31, 2014.
Learning outcomes
The course aims to provide the students with the fundamental notions of differential and integral calculus in one variable. Moreover, some introductory notions of linear algebra are given.
Program
1) Some notions of set theory.
2) The complete ordered field of the real numbers.
3) Euclidean distance and induced topology on the real line. Absolute value of a real number.
4) Cartesian plane.
5) Real functions of one real variable.
6) Polynomials and polynomial functions. Power, exponential and logarithmic functions. Trigonometric functions.
7) Limit of a function of one real variable.
8) Continuity of a function of one real variable at one point. Fundamental theorems on continuos functions.
9) Derivative of a function. Derivation rules. Fundamental theorems on differentiable functions.
10) Monotonicity of a function. Local and global minima and maxima of a function.
11) Convex functions.
12) Finite sums. Riemann integral. Integration rules. Improper integrals.
13) Ordinary differential equations. The separable and the linear case.
14) Some notions of linear algebra.
Examination Methods
Written exam