Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

Study Plan

Queste informazioni sono destinate esclusivamente agli studenti e alle studentesse già iscritti a questo corso.
Se sei un nuovo studente interessato all'immatricolazione, trovi le informazioni sul percorso di studi alla pagina del corso:

Laurea magistrale in Mathematics - Immatricolazione dal 2025/2026.

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.

CURRICULUM TIPO:

2° Year   activated in the A.Y. 2017/2018

ModulesCreditsTAFSSD
6
B
MAT/05
activated in the A.Y. 2017/2018
ModulesCreditsTAFSSD
6
B
MAT/05
Modules Credits TAF SSD
Between the years: 1°- 2°
One course to be chosen among the following
Between the years: 1°- 2°
Between the years: 1°- 2°
Other activitites
4
F
-

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




S Placements in companies, public or private institutions and professional associations

Teaching code

4S001101

Coordinator

Sisto Baldo

Credits

12

Language

English en

Scientific Disciplinary Sector (SSD)

MAT/05 - MATHEMATICAL ANALYSIS

Period

I sem. dal Oct 3, 2016 al Jan 31, 2017.

Learning outcomes

The course introduces to the basic concepts of measure theory (Lebesgue and abstract) and of modern functional analysis, with particular emphasis on Banach and Hilbert spaces. Whenever possible, abstract results will be presented together with applications to concrete function spaces and problems: the aim is to show how these techniques are useful in the different fields of pure and applied mathematics.

Program

Lebesgue measure and integral. Outer measures, abstract integration, integral convergence theorems. Banach spaces and their duals. Theorems of Hahn-Banach, of the closed graph, of the open mapping, of Banach-Steinhaus. Reflexive spaces. Spaces of sequences. Lp and W1,p spaces: functional properties and density/compactness results. Hilbert spaces, Hilbert bases, abstract Fourier series. Weak convergence and weak compactness. Spectral theory for self adjoint, compact operators. Basic notions from the theory of distributions.

Reference texts
Author Title Publishing house Year ISBN Notes
Kolmogorov, A.; Fomin, S. Elements of the Theory of Functions and Functional Analysis Dover Publications 1999 0486406830
Haim Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations Springer 2011 0387709134

Examination Methods

Written and oral test.
The written test will be based on the solution of open-form problems. The oral test will require a discussion of the written test and answering some questions proposed in open form.
The aim is to evaluate the skills of the students in proving statements and in solving problems, by employing some of the mathematical machinery and of the techniques studied in the course.

Students with disabilities or specific learning disorders (SLD), who intend to request the adaptation of the exam, must follow the instructions given HERE