Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

A.A. 2020/2021

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
I semestre Oct 1, 2020 Jan 29, 2021
II semestre Mar 1, 2021 Jun 11, 2021
Exam sessions
Session From To
Sessione invernale d'esame Feb 1, 2021 Feb 26, 2021
Sessione estiva d'esame Jun 14, 2021 Jul 30, 2021
Sessione autunnale d'esame Sep 1, 2021 Sep 30, 2021
Degree sessions
Session From To
Sessione di laurea estiva Jul 22, 2021 Jul 22, 2021
Sessione di laurea autunnale Oct 14, 2021 Oct 14, 2021
Sessione di laurea invernale Mar 16, 2022 Mar 16, 2022
Holidays
Period From To
Festa dell'Immacolata Dec 8, 2020 Dec 8, 2020
Vacanze Natalizie Dec 24, 2020 Jan 3, 2021
Vacanze Pasquali Apr 2, 2021 Apr 5, 2021
Festa del Santo Patrono May 21, 2021 May 21, 2021
Festa della Repubblica Jun 2, 2021 Jun 2, 2021
Vacanze estive Aug 9, 2021 Aug 15, 2021

Exam calendar

Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrolment FAQs

Academic staff

A B C D F G L M O R S

Albi Giacomo

giacomo.albi@univr.it +39 045 802 7913

Baldo Sisto

sisto.baldo@univr.it 045 802 7935

Bos Leonard Peter

leonardpeter.bos@univr.it +39 045 802 7987

Caliari Marco

marco.caliari@univr.it +39 045 802 7904

Castellini Alberto

alberto.castellini@univr.it +39 045 802 7908

Cubico Serena

serena.cubico@univr.it 045 802 8132

Dai Pra Paolo

paolo.daipra@univr.it +39 0458027093

Daldosso Nicola

nicola.daldosso@univr.it +39 045 8027076 - 7828 (laboratorio)

Delledonne Massimo

massimo.delledonne@univr.it 045 802 7962; Lab: 045 802 7058

Dipasquale Federico Luigi

federicoluigi.dipasquale@univr.it

Di Persio Luca

luca.dipersio@univr.it +39 045 802 7968

Favretto Giuseppe

giuseppe.favretto@univr.it +39 045 802 8749 - 8748

Gregorio Enrico

Enrico.Gregorio@univr.it 045 802 7937

Mantese Francesca

francesca.mantese@univr.it +39 045 802 7978

Marigonda Antonio

antonio.marigonda@univr.it +39 045 802 7809

Mattiolo Davide

davide.mattiolo@univr.it

Mazzuoccolo Giuseppe

giuseppe.mazzuoccolo@univr.it +39 0458027838

Monti Francesca

francesca.monti@univr.it 045 802 7910

Orlandi Giandomenico

giandomenico.orlandi at univr.it 045 802 7986

Rapa Alessandro

alessandro.rapa@univr.it

Rizzi Romeo

romeo.rizzi@univr.it +39 045 8027088

Rubio Y Degrassi Lleonard

lleonard.rubioydegrassi@univr.it

Sala Pietro

pietro.sala@univr.it 0458027850

Sansonetto Nicola

nicola.sansonetto@univr.it 049-8027932

Schiavi Simona

simona.schiavi@univr.it +39 045 802 7803

Schuster Peter Michael

peter.schuster@univr.it +39 045 802 7029

Segala Roberto

roberto.segala@univr.it 045 802 7997

Solitro Ugo

ugo.solitro@univr.it +39 045 802 7977

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.

CURRICULUM TIPO:
ModulesCreditsTAFSSD
ModulesCreditsTAFSSD
6
B
(MAT/05)
Final exam
32
E
-

1° Year

ModulesCreditsTAFSSD

2° Year

ModulesCreditsTAFSSD
6
B
(MAT/05)
Final exam
32
E
-
Modules Credits TAF SSD
Between the years: 1°- 2°1 module between the following
Between the years: 1°- 2°1 module between the following
Between the years: 1°- 2°
Between the years: 1°- 2°
Other activities
4
F
-

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




SPlacements in companies, public or private institutions and professional associations

Teaching code

4S001106

Coordinatore

Antonio Marigonda

Credits

6

Scientific Disciplinary Sector (SSD)

MAT/05 - MATHEMATICAL ANALYSIS

Language

English en

Period

I semestre dal Oct 1, 2020 al Jan 29, 2021.

Learning outcomes

In this course we will provide an introduction to Convex Analysis in finite and infinite-dimensional spaces. We will show also some applications to problems of nonlinear optimizations and control theory arising from physics and economics. At the end of the course, the student should be able to: - understand the deep link between this and the previous courses (in particular, Functional Analysis); - use the main tools of convex analysis to solve convex optimization problems; - formalize and analyze simple control system coming from physical and economics models, in the framework of optimal control theory; - be autonomous in the use of the textbook suggested for the course.

Program

Table of contents
==============

- Review of weak topology on Banach spaces: convex sets, Minkowski functional, linear continuous operators, weak topology, separation of convex sets.

- Convex functions: general properties, lower semicontinuous convex functions, convex conjugate, subdifferential in the sense of Convex Analysis. Introduction to Calculus of Variations.

- Generalizations of convexity: differential calculus in Hilbert and Banach spaces, proximal and limiting subdifferential, the density theorem, sum rule, chain rule, generalized gradient in Banach space.

- Introduction to control theory: multifunctions and trajectories of differential inclusions, viability,
equilibria, invariance, stabilization, reachability, Pontryagin Maximum Principle, necessary conditions
for optimality.

- Application to optimization problems arising from physical or economic models.

The course is divided in two part: 5 ECTS (Theory, 40 hours) and 1 ECTS (Exercises, 12 hours). Both part will be held as in class lectures.

During the course some cases of study will be assigned to groups of 4-5 student and will be discussed.

Recommended Textbooks
=====================
Ivar Ekeland and Roger Témam, Convex Analysis and Variational Problems, Ed. SIAM (1987)

F.H. Clarke, Y.S. Ledyaev, Ronald J. Stern, P.R. Wolenski, Nonsmooth Analysis and Control Theory, Ed. Springer-Verlag New York Inc. (1998)

Frank H. Clarke, Optimization and Nonsmooth Analysis, Ed. SIAM (1990)
**************************************
WARNING: DUE TO SANITARY EMERGENCY, ALL THE LECTURES WILL BE RECORDED AND WILL BE AVAILABLE IN THE MOODLE PAGE OF THE COURSE. SOME LECTURES WILL BE HELD IN CLASS (CHECK THE SCHEDULE FOR FURTHER DETAILS).

Bibliografia

Reference texts
Author Title Publishing house Year ISBN Notes
Ralph Tyrrell Rockafellar Convex Analysis Princeston University Press 1997 9780691015866
Ivar Ekeland and Roger Témam Convex Analysis and Variational Problems SIAM 1987 0-89871-450-8
F.H. Clarke, Y.S. Ledyaev, Ronald J. Stern, P.R. Wolenski Nonsmooth Analysis and Control Theory Springer-Verlag New York Inc. 1998 0387983368
Frank H. Clarke Optimization and Nonsmooth Analysis SIAM 1990 0-89871-256-4

Examination Methods

WARNING: THE ASSESSMENT PROCEDURES ARE SUBJECTED TO CHANGES FOLLOWING THE EVOLUTION OF THE COVID-19 EPIDEMY.
Remote examination will be granted for all students requiring it in the academic year 2020/2021.

Assessment Procedure
===================

The exam is divided into a written and an oral test, the two tests must be passed in the same exam session. There are no difference between the assessment of attending or non-attending students.

There will be also two partial test, one at the mid of the semester (indicatively, end of November), and the other one at the end of the semester. The first part will concern the first part of the program (until the introduction to the Calculus of Variations included), and the second on the remaining part of the program. The students who will pass both the partial tests, can directly access to the oral part in the exam session of February.

After the oral part, the teacher will propose the final mark (on the Italian ranking system from 18 to 30).

Structure of the tests
==================

The written test is concerns three exercise, and each of them will have the same contribute to the final mark. The first two exercises (one on the first part and the other on the second part of the program) will require the solution of specific problems. The third will be composed of questions on the whole of the program or on the material given to the students, asking for short open answers.

Each of the partial test will concern the relative part of the program, and will be made of three exercise. The first two will require the solution of specific problems, and the third one will be composed of questions on the relative part of the program or on the material given to the students, asking for short open answers. It will be mandatory for the student to solve the third exercise and choose one between the first and the second.

The oral part will test the whole of the program of the course.

Targets of the assessment procedure
===============================
- Knowledge and understanding: a part of the written and the oral tests will be devoted to verify the effective knowledge and understanding of the course's contents (mainly, the third exercise of the written test and the oral test).

- Applying knowledge and understanding: both during the written and the oral tests, the student will be required to solve problems based on the course's contents.

- Making judgements: during the tests, the student can be asked to solve problems requiring a contribution basing on the material of the course assigned for personal study.

- Communication skills: during the written and the oral tests, the solutions expressed in a clear, complete and short way will be preferred.

- Learning skills: part of the course's contents will be based on textbook or scientific articles left to the students for personal study.

Type D and Type F activities

I semestre From 10/1/20 To 1/29/21
years Modules TAF Teacher
1° 2° Algorithms D Roberto Segala (Coordinatore)
1° 2° Scientific knowledge and active learning strategies F Francesca Monti (Coordinatore)
1° 2° Genetics D Massimo Delledonne (Coordinatore)
1° 2° History and Didactics of Geology D Guido Gonzato (Coordinatore)
II semestre From 3/1/21 To 6/11/21
years Modules TAF Teacher
1° 2° Advanced topics in financial engineering F Luca Di Persio (Coordinatore)
1° 2° Algorithms D Roberto Segala (Coordinatore)
1° 2° Python programming language D Vittoria Cozza (Coordinatore)
1° 2° Organization Studies D Giuseppe Favretto (Coordinatore)
List of courses with unassigned period
years Modules TAF Teacher
1° 2° ECMI modelling week F Not yet assigned
1° 2° ESA Summer of code in space (SOCIS) F Not yet assigned
1° 2° Google summer of code (GSOC) F Not yet assigned
1° 2° Introduzione all'analisi non standard F Sisto Baldo
1° 2° C Programming Language D Pietro Sala (Coordinatore)
1° 2° LaTeX Language D Enrico Gregorio (Coordinatore)
1° 2° Mathematics mini courses F Marco Caliari (Coordinatore)

Career prospects


Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details.

Gestione carriere


Attendance

As stated in point 25 of the Teaching Regulations for the A.Y. 2021/2022, except for specific practical or lab activities, attendance is not mandatory. Regarding these activities, please see the web page of each module for information on the number of hours that must be attended on-site.
Please refer to the Crisis Unit's latest updates for the mode of teaching.

Graduation

Attachments

List of theses and work experience proposals

theses proposals Research area
Controllo di sistemi multiagente Calculus of variations and optimal control; optimization - Hamilton-Jacobi theories, including dynamic programming
Controllo di sistemi multiagente Calculus of variations and optimal control; optimization - Manifolds
Controllo di sistemi multiagente Calculus of variations and optimal control; optimization - Optimality conditions
Formule di rappresentazione per gradienti generalizzati Mathematics - Analysis
Formule di rappresentazione per gradienti generalizzati Mathematics - Mathematics
Mathematics Bachelor and Master thesis titles Various topics
Stage Research area
Internship proposals for students in mathematics Various topics

Alternative learning activities

In order to make the study path more flexible, it is possible to request the substitution of some modules with others of the same course of study in Mathematics at the University of Verona (if the educational objectives of the modules to be substituted have already been achieved in the previous career), or with others of the course of study in Mathematics at the University of Trento.

Attachments


Double degree

The University of Verona, through a network of agreements with foreign universities, offers international courses that enable students to gain a Double/Joint degree at the time of graduation. Indeed, students enrolled in a Double/Joint degree programme will be able to obtain both the degree of the University of Verona and the degree issued by the Partner University abroad - where they are expected to attend part of the programme -, in the time it normally takes to gain a common Master’s degree. The institutions concerned shall ensure that both degrees are recognised in the two countries.

Places on these programmes are limited, and admissions and any applicable grants are subject to applicants being selected in a specific Call for applications.

The latest Call for applications for Double/Joint Degrees at the University of Verona is available now!


Further services

I servizi e le attività di orientamento sono pensati per fornire alle future matricole gli strumenti e le informazioni che consentano loro di compiere una scelta consapevole del corso di studi universitario.