Studying at the University of Verona

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
LEZIONI 1° SEMESTRE 2°-3°-4°-5°-6°ANNO Oct 4, 2021 Dec 23, 2021
LEZIONI 1° E 2° SEMESTRE (INSEGNAMENTI ANNUALI) Oct 4, 2021 May 27, 2022
LEZIONI 1° E 2° SEMESTRE 1° ANNO (INSEGNAMENTI ANNUALI) Oct 18, 2021 May 27, 2022
LEZIONI 1°SEMESTRE 1° ANNO Oct 18, 2021 Dec 23, 2021
LEZIONI 2°SEMESTRE Feb 14, 2022 May 27, 2022
Exam sessions
Session From To
ESAMI DI PROFITTO SESSIONE INVERNALE A.A. 2020/2021 E 1° SEMESTRE A.A. 2021/2022 Jan 7, 2022 Feb 11, 2022
ESAMI DI PROFITTO SESSIONE ESTIVA A.A. 2021/2022 May 31, 2022 Jul 29, 2022
ESAMI DI PROFITTO SESSIONE ESTIVA LAUREANDI A.A. 2021/2022 May 31, 2022 Jul 1, 2022
ESAMI DI PROFITTO SESSIONE AUTUNNALE A.A. 2021/2022 Sep 1, 2022 Sep 30, 2022
Degree sessions
Session From To
SESSIONE INVERNALE A.A. 2020/2021 Mar 1, 2022 Mar 11, 2022
SESSIONE ESTIVA A.A. 2021/2022 Jul 13, 2022 Jul 29, 2022
SESSIONE AUTUNNALE A.A. 2021/2022 Oct 10, 2022 Oct 21, 2022
Holidays
Period From To
FESTIVITA' OGNISSANTI Nov 1, 2021 Nov 1, 2021
FESTIVITA' IMMACOLATA CONCEZIONE Dec 8, 2021 Dec 8, 2021
VACANZE DI NATALE Dec 23, 2021 Jan 2, 2022
VACANZE DI PASQUA Apr 15, 2022 Apr 19, 2022
FESTA DELLA LIBERAZIONE Apr 25, 2022 Apr 25, 2022
FESTA DEL LAVORO May 1, 2022 May 1, 2022
FESTIVITA' DEL SANTO PATRONO SAN ZENO May 21, 2022 May 21, 2022
FESTIVITA' DELLA REPUBBLICA Jun 2, 2022 Jun 2, 2022
Other Periods
Description Period From To
ATTIVITA' FACOLTATIVA O DI RECUPERO TIROCINIO ATTIVITA' FACOLTATIVA O DI RECUPERO TIROCINIO Oct 1, 2021 Sep 30, 2022
TIROCINIO 1° SEMESTRE TIROCINIO 1° SEMESTRE Oct 1, 2021 Feb 11, 2022
TIROCINIO 1° E 2° SEMESTRE (INSEGNAMENTI ANNUALI) TIROCINIO 1° E 2° SEMESTRE (INSEGNAMENTI ANNUALI) Oct 1, 2021 May 27, 2022
TIROCINIO 2° SEMESTRE TIROCINIO 2° SEMESTRE Feb 14, 2022 Jul 22, 2022

Exam calendar

Exam dates and rounds are managed by the relevant Medicine Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrolment FAQs

Academic staff

A B C D F G I L M N P R S T U Z

Albanese Massimo

symbol email massimo.albanese@univr.it symbol phone-number +39 045 812 4251/4024

Antonello Monica

symbol email monica.antonello@univr.it

Bazzoni Flavia

symbol email flavia.bazzoni@univr.it symbol phone-number +39 045 802 7128

Bertini Giuseppe

symbol email giuseppe.bertini@univr.it symbol phone-number 045-802-7682

Bertossi Dario

symbol email dario.bertossi@univr.it symbol phone-number +39 045 812 4096

Boschi Federico

symbol email federico.boschi@univr.it symbol phone-number +39 045 802 7272

Busetto Giuseppe

symbol email giuseppe.busetto@univr.it symbol phone-number +39 0458027290

D'Agostino Antonio

symbol email antonio.dagostino@univr.it symbol phone-number +39 045 812 4023

Danese Elisa

symbol email elisa.danese@univr.it symbol phone-number +39 045 812 6698

De Franceschi Lucia

symbol email lucia.defranceschi@univr.it symbol phone-number 0458124918

De Leo Domenico

symbol email domenico.deleo@univr.it symbol phone-number +39 045 812 4942

De Santis Daniele

symbol email daniele.desantis@univr.it symbol phone-number +39 045 812 4251 - 4097

Donadello Katia

symbol email katia.donadello@univr.it symbol phone-number +39 045 812 4311

D'Onofrio Mirko

symbol email mirko.donofrio@univr.it symbol phone-number +39 045 8124301

Fabene Paolo

symbol email paolo.fabene@univr.it symbol phone-number 0458027267

Fabrizi Gian Maria

symbol email gianmaria.fabrizi@univr.it symbol phone-number +39 0458124461

Faccioni Fiorenzo

symbol email fiorenzo.faccioni@ospedaleuniverona.it symbol phone-number +39 045 812 4251 - 4868

Gerosa Roberto

symbol email roberto.gerosa@univr.it symbol phone-number 0458124863

Girelli Massimo

symbol email massimo.girelli@univr.it symbol phone-number +39 0458027106

Girolomoni Giampiero

symbol email giampiero.girolomoni@univr.it symbol phone-number +39 045 812 2547

Gisondi Paolo

symbol email paolo.gisondi@univr.it symbol phone-number +39 045 812 2547

Iacono Calogero

symbol email calogero.iacono@univr.it symbol phone-number +39 045 812 4412

Lleo'Fernandez Maria Del Mar

symbol email maria.lleo@univr.it symbol phone-number 045 8027194

Lombardo Giorgio

symbol email giorgio.lombardo@univr.it symbol phone-number +39 045 812 4867

Luciano Umberto

symbol email umberto.luciano@univr.it symbol phone-number +39 045 807 4251

Maffeis Claudio

symbol email claudio.maffeis@univr.it symbol phone-number +39 045 812 7664

Malchiodi Luciano

symbol email luciano.malchiodi@univr.it symbol phone-number +39 045 812 4855

Marchini Giorgio

symbol email giorgio.marchini@univr.it symbol phone-number +39 045 812 6140

Marchiori Mattia

symbol email mattia.marchiori@univr.it

Marcon Alessandro

symbol email alessandro.marcon@univr.it symbol phone-number +39 045 802 7668

Martignoni Guido

symbol email guido.martignoni@univr.it

Menegazzi Marta Vittoria

symbol email marta.menegazzi@univr.it symbol phone-number +39 045 802 7168

Molteni Gabriele

symbol email gabriele.molteni@univr.it symbol phone-number 045 812 2330

Moretti Ugo

symbol email ugo.moretti@univr.it symbol phone-number 0458027602; 0458124245

Mottes Monica

symbol email monica.mottes@univr.it symbol phone-number +39 045 8027 184

Nicoli Aldini Nicolo

symbol email nicolo.nicolialdini@gmail.com symbol phone-number 338 7363781

Nocini Pier Francesco

symbol email pierfrancesco.nocini@univr.it symbol phone-number + 39 045 812 4251

Polati Enrico

symbol email enrico.polati@univr.it symbol phone-number +39 045 812 7430 - 4311

Raniero Dario

symbol email dario.raniero@univr,.it symbol phone-number 0458027503

Romanelli Maria

symbol email mariagrazia.romanelli@univr.it symbol phone-number +39 045 802 7182

Ruggeri Mirella

symbol email mirella.ruggeri@univr.it symbol phone-number 0458124953

Sboarina Andrea

symbol email andrea.sboarina@univr.it symbol phone-number +39 045 802 7291

Scupoli Maria

symbol email mariateresa.scupoli@univr.it symbol phone-number 045-8027405 045-8128425

Tardivo Stefano

symbol email stefano.tardivo@univr.it symbol phone-number +39 045 802 7660

Tinazzi Michele

symbol email michele.tinazzi@univr.it symbol phone-number +39 045 8122601

Trevisiol Lorenzo

symbol email lorenzo.trevisiol@univr.it symbol phone-number +39 045 812 4023

Ugel Stefano

symbol email stefano.ugel@univr.it symbol phone-number 045-8126451

Zanolin Maria Elisabetta

symbol email elisabetta.zanolin@univr.it symbol phone-number +39 045 802 7654

Zerman Nicoletta

symbol email nicoletta.zerman@univr.it symbol phone-number + 39 045 812 4251 - 4857

Zotti Francesca

symbol email francesca.zotti@univr.it symbol phone-number +39 045 812 6938

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.

ModulesCreditsTAFSSD
10
A
BIO/16
7
A
BIO/10
6
A
FIS/07
7
A
BIO/17
13
A/B/C
INF/01 ,MED/01 ,MED/02 ,M-PED/03 ,M-PSI/01
ModulesCreditsTAFSSD
7
A
BIO/10
9
A
BIO/09
13
B
MED/04 ,MED/07 ,MED/42
20
B/C/F
- ,INF/01 ,MED/28 ,MED/43 ,MED/50
ModulesCreditsTAFSSD
5
B/F
- ,MED/28
3
B/F
- ,MED/28
4
B/F
- ,MED/25 ,MED/26
13
B/F
- ,MED/18 ,MED/35 ,MED/41
ModulesCreditsTAFSSD
12
B/F
- ,MED/28
7
B/F
- ,MED/28 ,MED/38
8
B/F
- ,MED/28
6
B/F
- ,MED/28
10
B/C/F
- ,MED/28 ,MED/29 ,MED/31

1° Year

ModulesCreditsTAFSSD
10
A
BIO/16
7
A
BIO/10
6
A
FIS/07
7
A
BIO/17
13
A/B/C
INF/01 ,MED/01 ,MED/02 ,M-PED/03 ,M-PSI/01

2° Year

ModulesCreditsTAFSSD
7
A
BIO/10
9
A
BIO/09
13
B
MED/04 ,MED/07 ,MED/42
20
B/C/F
- ,INF/01 ,MED/28 ,MED/43 ,MED/50

4° Year

ModulesCreditsTAFSSD
5
B/F
- ,MED/28
3
B/F
- ,MED/28
4
B/F
- ,MED/25 ,MED/26
13
B/F
- ,MED/18 ,MED/35 ,MED/41

5° Year

ModulesCreditsTAFSSD
12
B/F
- ,MED/28
7
B/F
- ,MED/28 ,MED/38
8
B/F
- ,MED/28
6
B/F
- ,MED/28
10
B/C/F
- ,MED/28 ,MED/29 ,MED/31

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




S Placements in companies, public or private institutions and professional associations

Teaching code

4S01828

Credits

7

Language

Italian

Scientific Disciplinary Sector (SSD)

BIO/10 - BIOCHEMISTRY

Period

LEZIONI 2°SEMESTRE  dal Feb 14, 2022 al May 27, 2022.

Learning outcomes

Chemistry General aims of this education are to provide the essential elements to acquire the modern theories on the atomic and molecular structure of the inorganic and organic matter. The students should be able to comprehend and analyse the macroscopic phenomena emerging from several molecular steps and should focus their attention on the importance of the energetic variations associated to the phenomena. A major attention will be addressed to the study of the interactions present in the organic compounds, to help the student to acquire durable theoretical basis to understand the complex biochemical processes through a “molecular key”. Specific aims are: Understanding the electronic configuration in order to understand the properties 'periodic and reactivity' of chemical elements. Understanding of changes in the external electronic structure in the molecules formation. Understanding the nature of the forces between the molecules. To explain the chemical and physical concepts of energy and balance, which regulate all biological phenomena. Understanding the importance of water as a solvent in biological systems; understanding the properties of acids and bases. Understanding the concept of pH and buffer solutions in biological systems. Understanding the meaning of osmotic flow and its importance in medicine. Understanding the significance of reactions of electron transfer in biological systems. Understanding the importance of the structure of organic molecules and recognize the different classes of organic compounds, their officials and their chemical reactivity.

Program

l. OBJECTIVE: understanding the electronic configuration in order to understand the properties 'periodic and reactivity' of chemical elements.
Contents: Specimen layout of the atom, mass and charge of subatomic particles, meaning of the atomic number and the mass number, mole, Avogadro's number. Electromagnetic radiation, quanta and photons. Optical spectra. Bohr's atomic model. Electron motion: atomic orbitals, energy levels defined by quantum numbers, orbital forms (s, p), the Pauli exclusion principle. Electronic structure of the elements: progressive filling of the orbitals, Hund's rule. Electronic formulas of the first 18 elements in a neutral manner and in ionic form. Reading and understanding of the periodic table of the elements. Periodical properties: effective nuclear charge, ionization energy, electronic affinity, formation of positive or negative ions; size of neutral atoms and ions, metallic character.
2. OBJECTIVE: understanding of changes in the external electronic structure in the molecules formation.
Contents: attractive and repulsive forces between the atoms in the formation of chemical bonds, bond energy and octet rule. Ionic bond, crystalline salts structure, reticular energy, charge density, ion properties of ionic compounds; pure covalent bond, overlap of atomic orbitals, covalent dative bond. Length of bound. Polarity of covalent bonding, dipole moment, electro negativity, concept of valence. Theory of molecular orbitals, ligand and anti-ligand region, energy orbitals. Hybrid orbitals: sp hybridization, sp2, sp3 and spatial geometry of the molecules. Length and energy of multiple bonds. Bonding orbitals: molecular orbitals of σ and П. Delocalization of the electrons of the П bond, resonance. Coordination compounds, bond in metals.

3. OBJECTIVE: understanding the nature of the forces between the molecules.
Contents: hydrogen bridge bonds, the hydrogen bond strength compared to that of the corresponding covalent bond. Water structure in solid, liquid, gaseous state.
Attractive forces between molecules: dipoles, permanent and instant dipoles.

4. OBJECTIVE: to explain the chemical and physical concepts of energy and balance, which regulate all biological phenomena.
Contents: differences in energy between the reactants and products: components of internal energy, heat and work, reaction heat, differences in enthalpy, exothermic and endothermic reactions, ∆H as the sum of the energies of the bonds split and bonds formed, heat of solution, Hess law. Criteria of spontaneity of reaction, reactions favored and not, entropy and the second law of thermodynamics; entropy change of the environment, differences of free energy, exergonic and endergonic reactions. Enthalpy, entropy and free energy in standard condition. Mathematical relationship between the differences of enthalpy, entropy and free energy; importance of temperature in determining the spontaneity of reactions. Reversible reactions, chemical equilibrium and equilibrium constant.
Equilibrium disturbances, principle of Le Chathelier; relation between equilibrium constant and free energy.
Coupling of exergonic reactions (eg hydrolysis of ATP) with endergonic reactions.
Elements of chemical kinetics: the activated complex theory, catalysts, slow stage of the reaction, reaction orders.

5. OBJECTIVE: understanding the importance of water as a solvent in biological systems; understanding the properties of acids and bases. Understanding the concept of pH and buffer solutions in biological systems.
Contents: Dielectric constant of water; solvation of the salts in aqueous solution; electrolytes, ionic surfactants, non-ionic and non-electrolytes: definition of acid and base; auto-ionization of water: ionic product of water. Strong acids and bases, acids and their conjugate bases, weak acids, strength of acid and the conjugate base, acid dissociation constant (Ka) and basic (Kb). Polyprotic acids. pH scale. Outline of acid-base titrations. Equivalent and normality. Buffer solutions. Henderson-Hasselbalch equation. Buffering capacity, carbonic acid-bicarbonate buffer.

6. OBJECTIVE: understanding the meaning of osmotic flow and its importance in medicine.
Contents: drop in vapor pressure. Osmotic pressure, law Wan't Hoff, osmotic pressure and electrolytes, osmolality. Tone of a solution.

7. OBJECTIVE: understanding the significance of reactions of electron transfer in biological systems.
Contents: oxidation number, rules for calculating the number of oxidants. Reactions coupled by oxidation and reduction; element reducing and oxidizing. Oxidation and reduction as: a) loss or acquisition of electrons, b) increase or decrease in the oxidation number, c) addition or subtraction of oxygen, d) removal or addition of hydrogen. Oxidizing agents and reducing agents. Galvanic cells (cell Zn-Cu), cell potential, standard potentials and equilibrium constant, potential and free energy: Nernst equation. Standard reduction potential E° of some half-reactions important in biochemistry.

8. OBJECTIVE: understanding the importance of the structure of organic molecules and recognize the different classes of organic compounds, their officials and their chemical reactivity.
Contents: bonds between carbon atoms, structural formulas, isomers. Hydrocarbons: three-dimensional structure and hybrid orbitals and chemical reactivity in alkanes, alkenes, alkynes. Overview of the main rules of IUPAC nomenclature. Degree of unsaturation. Effect of hyperconjugation. Nucleophilic and electrophilic reagents. Addition reactions in alkenes, electrophilic addition, regio-selectivity, order of stability of carbocations, nucleophilic addition to alpha-beta unsaturated carbonyl compounds, and conjugated dienes. Aromatic hydrocarbons, structures and resonance energy, rule of Huckel, aromaticity, electrophilic aromatic substitution. Heterocyclic aromatic compounds: solubility, acid-basic features. Functional groups containing heteroatoms: amines (primary, secondary and tertiary), structure, solubility and reactivity; imines. Alcohols: chemical and physical characteristics, primary, secondary and tertiary alcohols; ethers. Homolytic and heterolytic rupture of bonds, stabilization of radicals, conjugation radicals, carbocations and carbanions. Carbonyl compounds: aldehydes and ketones, resonance structures, reactivity of the carbonyl functional group, nucleophilic attack to the carbonyl carbon, oxygen electrophilic attack, formation of hemiacetals. Carboxylic acids, solubility, reactivity of the carboxyl group. Carboxylic acid derivatives: formation of esters, amides, imides, anhydrides. Resonance and relative reactivity of the derivatives of carboxylic acids. Thiols, functional group, solubility compared to alcohols, oxidation reactions. High energy compounds: thioesters and esters, comparing the free energies of hydrolysis; mixed anhydrides, phosphoric anhydride, ∆G hydrolysis of the ATP binds. Tautomery cheto¬enolic, phosphoenolpyruvate. Factors affecting the acidity of organic compounds: electronegativity, bond energy, steric effects, inductive effects, effects of hybridization, resonance effects, aromaticity. Acidity of the carbon in alpha to a carbonyl group. Oxidation states of carbon and nitrogen in organic compounds, oxidation-reduction reactions. Chirality, enantiomers, diastereoisomers. Carbohydrates: monosaccharides, aldoses and ketosis, Fisher projections, series D, cyclic structure, physical properties and reactivity, glycoside bond, disaccharides, polysaccharides. Generalities on fatty acids.

Bibliography

Visualizza la bibliografia con Leganto, strumento che il Sistema Bibliotecario mette a disposizione per recuperare i testi in programma d'esame in modo semplice e innovativo.

Examination Methods

Written test concerning the calculations of solution concentrations, pH of buffer solutions, deltaG, electrical potential and osmolality. To be admitted to the oral examination it is necessary to exceed 70% of the exercises. The oral examination will concern on all program topics.

???AdattamentoProvaEsameDSA???

Free choice courses

Modules not yet included

Career prospects


Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details.

Graduation

Attachments

Title Info File
Doc_Univr_pdf Copertina tesi_fac simile 288 KB, 11/08/22 
Doc_Univr_pdf Norme redazionali della tesi di laurea 305 KB, 24/03/22 
Doc_Univr_pdf Regolamento esame finale 379 KB, 24/03/22 

Gestione carriere


Area riservata studenti