Studiare
In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.
Piano Didattico
Il piano didattico è l'elenco degli insegnamenti e delle altre attività formative che devono essere sostenute nel corso della propria carriera universitaria.
Selezionare il piano didattico in base all'anno accademico di iscrizione.
1° Anno
2° Anno Attivato nell'A.A. 2022/2023
Insegnamenti | Crediti | TAF | SSD |
---|
Insegnamenti | Crediti | TAF | SSD |
---|
Insegnamenti | Crediti | TAF | SSD |
---|
4 insegnamenti a scelta
2 insegnamenti a scelta (A.A. 2022/23 Quantum computing non erogato)
3 insegnamenti a scelta (A.A. 2022/23 Quantum computing non erogato)
Legenda | Tipo Attività Formativa (TAF)
TAF (Tipologia Attività Formativa) Tutti gli insegnamenti e le attività sono classificate in diversi tipi di attività formativa, indicati da una lettera.
Big data (2021/2022)
Codice insegnamento
4S008912
Docente
Coordinatore
Crediti
6
Lingua di erogazione
Italiano
Settore Scientifico Disciplinare (SSD)
INF/01 - INFORMATICA
Periodo
Primo semestre dal 4 ott 2021 al 28 gen 2022.
Obiettivi formativi
Il corso si propone di fornire i concetti fondamentali dei sistemi di calcolo distribuito che devono gestire grandi quantità di dati, insieme ai paradigmi di programmazione adottati da tali sistemi. Al termine del corso lo studente dovrà dimostrare di avere acquisito le conoscenze necessarie per valutare le possibili alternative nella progettazione dell'analisi di grandi moli di dati, considerando i benefici e le limitazioni dei diversi approcci. Queste conoscenze consentiranno allo studente di: i) configurare sistemi paralleli di elaborazione di dati; ii) progettare soluzioni per analizzare grandi moli di dati; iii) valutare le soluzioni per l'analisi dei dati con sistemi paralleli, considerando le risorse di sistema necessarie all'analisi stessa; iv) proseguire gli studi in modo autonomo nell’ambito dello sviluppo di analisi avanzate di grandi moli di dati.
Programma
* Framework di programmazione:
-- Filesystem distribuiti (HDFS);
-- Analisi di dati e grafi (MapReduce, Pregel);
-- Sistemi SQL-like (Pig, Hive);
-- Sistemi NoSQL (HBase, Cassandra).
* Algoritmi:
-- Progettazione di algoritmi per l'analisi dei testi;
-- Algoritmi per l'indicizzazione (inverted indexing);
-- Analisi dei grafi (PageRank).
* Architetture dei data center:
-- Struttura e organizzazione di un data center;
-- Connettività di rete;
-- Gestione degli errori e dei guasti.
Bibliografia
Modalità d'esame
L'esame consiste nello svolgimento di un progetto e relativa documentazione. Obiettivo del progetto è quello di accertare la comprensione dei contenuti del corso e la capacità di applicare tali contenuti nella risoluzione di problemi. Il tema del progetto viene concordato con il docente e riguarda l'applicazione delle nozioni viste durante il corso in casi di studio specifici. Lo svolgimento del progetto include la valutazione delle prestazioni al variare delle dimensioni dell'input da analizzare, nonché la valutazione delle possibili alternative implementative. Dopo una valutazione della documentazione, è possibile sostenere una prova orale in cui viene discusso il progetto stesso.