Studiare

In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.

Calendario accademico

Il calendario accademico riporta le scadenze, gli adempimenti e i periodi rilevanti per la componente studentesca, personale docente e personale dell'Università. Sono inoltre indicate le festività e le chiusure ufficiali dell'Ateneo.
L’anno accademico inizia il 1° ottobre e termina il 30 settembre dell'anno successivo.

Calendario accademico

Calendario didattico

Il calendario didattico indica i periodi di svolgimento delle attività formative, di sessioni d'esami, di laurea e di chiusura per le festività.

Definizione dei periodi di lezione
Periodo Dal Al
Primo semestre 3-ott-2022 27-gen-2023
Secondo semestre 6-mar-2023 16-giu-2023
Sessioni degli esami
Sessione Dal Al
Sessione invernale d'esame 30-gen-2023 3-mar-2023
Sessione estiva d'esame 19-giu-2023 31-lug-2023
Sessione autunnale d'esame 4-set-2023 29-set-2023
Sessioni di lauree
Sessione Dal Al
Sessione Estiva 15-lug-2023 15-lug-2023
Sessione Autunnale 13-ott-2023 13-ott-2023
Sessione Invernale 13-mar-2024 13-mar-2024
Vacanze
Periodo Dal Al
Tutti i Santi 1-nov-2022 1-nov-2022
Ponte dell'Immacolata Concezione 8-dic-2022 9-dic-2022
Vacanze natalizie 24-dic-2022 8-gen-2023
Vacanze di Pasqua 7-apr-2023 10-apr-2023
Festa della Liberazione 24-apr-2023 25-apr-2023
Festa del lavoro 1-mag-2023 1-mag-2023
Festa del Santo Patrono 21-mag-2023 21-mag-2023
Festa della Repubblica 2-giu-2023 2-giu-2023
Chiusura estiva 14-ago-2023 19-ago-2023

Calendario esami

Gli appelli d'esame sono gestiti dalla Unità Operativa Segreteria Corsi di Studio Scienze e Ingegneria.
Per consultazione e iscrizione agli appelli d'esame visita il sistema ESSE3.
Per problemi inerenti allo smarrimento della password di accesso ai servizi on-line si prega di rivolgersi al supporto informatico della Scuola o al servizio recupero credenziali

Calendario esami

Per dubbi o domande leggi le risposte alle domande più frequenti F.A.Q. Iscrizione Esami

Docenti

B C D F M O P Q R S

Belussi Alberto

symbol email alberto.belussi@univr.it symbol phone-number +39 045 802 7980

Bombieri Nicola

symbol email nicola.bombieri@univr.it symbol phone-number +39 045 802 7094

Bonacina Maria Paola

symbol email mariapaola.bonacina@univr.it symbol phone-number +39 045 802 7046

Carra Damiano

symbol email damiano.carra@univr.it symbol phone-number +39 045 802 7059

Castellani Umberto

symbol email umberto.castellani@univr.it symbol phone-number +39 045 802 7988

Ceccato Mariano

symbol email mariano.ceccato@univr.it

Cicalese Ferdinando

symbol email ferdinando.cicalese@univr.it symbol phone-number +39 045 802 7969

Cristani Matteo

symbol email matteo.cristani@univr.it symbol phone-number 045 802 7983

Cristani Marco

symbol email marco.cristani@univr.it symbol phone-number +39 045 802 7841

Cubico Serena

symbol email serena.cubico@univr.it symbol phone-number 045 802 8132

Dalla Preda Mila

symbol email mila.dallapreda@univr.it

Di Pierro Alessandra

symbol email alessandra.dipierro@univr.it symbol phone-number +39 045 802 7971

Farinelli Alessandro

symbol email alessandro.farinelli@univr.it symbol phone-number +39 045 802 7842

Fummi Franco

symbol email franco.fummi@univr.it symbol phone-number 045 802 7994

Masini Andrea

symbol email andrea.masini@univr.it symbol phone-number 045 802 7922

Mastroeni Isabella

symbol email isabella.mastroeni@univr.it symbol phone-number +39 045 802 7089

Meli Daniele

symbol email daniele.meli@univr.it

Menegaz Gloria

symbol email gloria.menegaz@univr.it symbol phone-number +39 045 802 7024

Merro Massimo

symbol email massimo.merro@univr.it symbol phone-number 045 802 7992

Oliboni Barbara

symbol email barbara.oliboni@univr.it symbol phone-number +39 045 802 7077

Paci Federica Maria Francesca

symbol email federicamariafrancesca.paci@univr.it symbol phone-number +39 045 802 7909

Pianezzi Daniela

symbol email daniela.pianezzi@univr.it

Posenato Roberto

symbol email roberto.posenato@univr.it symbol phone-number +39 045 802 7967

Quaglia Davide

symbol email davide.quaglia@univr.it symbol phone-number +39 045 802 7811

Rizzi Romeo

symbol email romeo.rizzi@univr.it symbol phone-number +39 045 8027088

Sala Pietro

symbol email pietro.sala@univr.it symbol phone-number 0458027850

Segala Roberto

symbol email roberto.segala@univr.it symbol phone-number 045 802 7997

Piano Didattico

Il piano didattico è l'elenco degli insegnamenti e delle altre attività formative che devono essere sostenute nel corso della propria carriera universitaria.
Selezionare il piano didattico in base all'anno accademico di iscrizione.

CURRICULUM TIPO:
InsegnamentiCreditiTAFSSD
Prova finale
24
E
-

1° Anno

2° Anno

InsegnamentiCreditiTAFSSD
Prova finale
24
E
-
Insegnamenti Crediti TAF SSD
Tra gli anni: 1°- 2°
Lingua inglese liv. B2
3
F
-
Tra gli anni: 1°- 2°
Tra gli anni: 1°- 2°
Altre attivita'
3
F
-

Legenda | Tipo Attività Formativa (TAF)

TAF (Tipologia Attività Formativa) Tutti gli insegnamenti e le attività sono classificate in diversi tipi di attività formativa, indicati da una lettera.




S Stage e tirocini presso imprese, enti pubblici o privati, ordini professionali

Codice insegnamento

4S008911

Crediti

6

Coordinatore

Pietro Sala

Lingua di erogazione

Italiano

Settore Scientifico Disciplinare (SSD)

INF/01 - INFORMATICA

L'insegnamento è organizzato come segue:

Teoria

Crediti

5

Periodo

Primo semestre

Docenti

Pietro Sala

Laboratorio

Crediti

1

Periodo

Primo semestre

Docenti

Pietro Sala

Obiettivi di apprendimento

Il corso si propone di fornire le basi teoriche e pratiche riguardanti l’integrazione di dati da sorgenti eterogenee e la conseguente fase di estrazione di informazioni di sintesi e/o conoscenza. Al termine del corso gli studenti saranno in grado, dato un problema di data mining, di sviluppare un'intera pipeline per l'integrazione delle sorgenti di dati necessarie, scegliere e applicare tecniche di data mining più adeguate, e, infine, valutare l'efficacia delle tecniche utilizzate. Con le capacità acquisite lo studente sarà in grado di elaborare soluzioni originali o adattare soluzioni esistenti a problemi di data mining provenienti da svariati ambiti (industriale, aziendale, sanitario, etc.) e valutarne l'applicabilità nel mondo reale.

Prerequisiti e nozioni di base

Buone conoscenze di programmazione,
interrogazione/manipolazione basi di dati.

Programma

Richiami sulle Dipendenze Funzionali (FD):
Richiami sulle FD, verifica e vincoli in presenza di FD in PostgreSQL.

Dipendenze Funzionali Approssimate (AFD):
Introduzione dell’approssimazione nelle FD come misura di confidenza. Estrazione di conoscenza tramite AFD: esempi. Analisi di AFD estratte.

Algoritmi per l’estrazione di AFD:
AFD minimali: definizione, significato e interpretazione. Lower Bound Teorici al numero di AFD minimali: la maledizione della cardinalità. Algoritmo base per l’estrazione di AFD minimali. Rappresentazioni compatte dell’insieme delle AFD estratte. Algoritmi randomizzati per l’estrazione di AFD Minimali: teoria ed implementazione.

Approssimazione in presenza di misure:
Delta Dipendenze Funzionali (DFD): definizione, applicazione, e verifica. Interpretazione di DFD estratte. DFD approssimate (ADFD):
definizione, applicazione ed interpretazione su dati clinici (esempi).
Algoritmo per la verifica di singole ADFD ristrette al caso di due misure (2ADFD):
studio di complessità, implementazione. Estrazione di 2ADFD minimali.

Regole di Associazione (AR):
definizione, esempi in ambito clinico. Estrazione di AR: supporto e confidenza. Analisi teorica delle regole di associazione: la maledizione della cardinalità. Insieme di oggetti frequenti (FI) :
definizione, ruolo nell’estrazione di AR, e algoritmi per la generazione di candidati. Estrazione di AR da insiemi di FI. Insiemi di FI: insiemi minimali, insiemi chiusi. Strategie per l’esplorazione del reticolo degli FI. Strutture alternative per la estrazione di insiemi frequenti (hash trees, FP-trees). Valutazione dei pattern di associazione: problematiche del sistema supporto/confidenza. Esempi di paradossi. Misure alternative per l’analisi dei pattern di associazione: definizione ed esempi.

Estrazione Trasformazione e Caricamento (ETL):
definizione, funzioni, ruolo all’interno di un data warehouse, flussi di dati.
Componenti base delle procedure ETL e loro funzionamento:
Job, Trasformazioni, Job Step, Transformation Step.
Modellazione concettuale di procedure ETL in Business Process Model and Notation (BPMN). Esempi di modellazione: casi studio. Utilizzo di procedure esterne all’interno di procedure ETL: comunicazione, staging e gestione delle terminazioni anomale. Utilizzo di API (Application Programming Interface)
all’interno di procedure ETL. Breve descrizione dell’utilizzo di XPATH. Screen scraping di siti web in procedure ETL attraverso l’utilizzo di XPATH. Utilizzo della strumentazione presente all’interno delle suite di Business Intelligence per implementare procedure ETL.

Classificatori basati su Entropia:
il concetto di entropia. Alberi di decisione in ambito biomedico. Il classificatore Iterative Dichotomiser 3 (ID3): algoritmo, esempi e implementazione.
Discretizzazione delle misure. Utilizzo di ID3 come discretizzatore per misure: problematiche, modifiche e implementazione. Applicazione all’analisi temporale.

Reportistica e OLAP (Online Analytical Processing):
Reportistica interattiva: interrogazione delle basi di dati cliniche, parametrizzazione della reportistica. Recupero dinamico dei dati per la reportistica tramite trasformazioni ETL. Modellazioni di analisi con cubi OLAP e loro implementazione: casi di studio.
Utilizzo della strumentazione presente all’interno delle suite di Business Intelligence per implementare reportistica interattiva e dinamica e cubi OLAP.

Data Mining Distribuito:
cenni di calcolo distribuito, suddivisione di un problema di data mining per il calcolo distribuito,
modellazione e implementazione di un sistema distribuito per il data mining, utilizzo di database NoSQL
per il calcolo distribuito.

Analisi Probabilistica dei Processi:
Analisi qualitativa di un processo tramite tecniche di process mining e process discovery,
estrazione e trasformazione di processi in modelli probabilistici (Markov Chains, Markov Decision Processes),
strumenti per l'analisi probabilistica dei sistemi (PRISM model checker).

TESTI CONSIGLIATI:

DJ Hand, H Mannila, P Smyth
Principles of data mining
MIT Press Cambridge, MA, USA ©2001
ISBN:0-262-08290-X 9780262082907

Roland Bouman, Jos van Dongen
Pentaho Solutions: Business Intelligence and Data Warehousing with Pentaho and MySQL
Wiley Publishing, Inc.
ISBN: 978-0-470-48432-6
648 pages
September 2009

The elements of statistical learning. Data mining, inference, and prediction.
T. Hastie, R. Tibshirani, J. Friedman.
2009 Springer

MATERIALI FORNITI ALLO STUDENTE:

lucidi del corso;
dati di esempio (in formato .csv) per eseguire gli esercizi proposti a lezione;
codice delle procedure esposte a lezione;
Jupyter notebooks e Docker container per eseguire gli algoritmi spiegati durante le lezioni.

Modalità didattiche

Prima di ogni lezione verrà fornita una registrazione che tratta in maniera generale gli argomenti della stessa.
Durante la lezione in presenza (non registrata)
viengono approfonditi tali argomenti mediante
esempi e lo svolgimento di esercizi con discussione
e aiuto da parte del docente.
La lezione si svolge in laboratorio si consiglia,
se possibile, di venire in presenza.

Modalità di verifica dell'apprendimento

La modalità di esame è orientata alla verifica dell’autonomia e delle capacità da parte dello studente nell’applicare i concetti appresti al lezione per sviluppare sistemi una end-to-end pipeline per un dato problema di Data Mining. L'esame prevede un colloquio orale sulla realizzazione due progetti assegnati durante le lezioni,
uno per ognuno dei due macro-argomenti trattati nel corso:
1) ETL e Analisi OLAP.
2) Data Mining;
I progetti sono da svolgere in modalità individuale o in gruppo il colloquio, l'orale verte esclusivamente
sulla realizzazione dei due progetti. Una condizione necessaria ma non sufficiente al superamento
dell'esame consiste nelle realizzazione dei due progetti nella loro interezza.
In particolare i progetti verranno valutati fino a un massimo di 15 punti ognuno e il voto finale sarà rappresentato
dalla somma delle due valutazioni.

L'esame non cambia da studenti frequentanti a non frequentanti.

Criteri di valutazione

I progetti verranno valutati secondo i seguenti criteri:

attinenza ai requisiti;

correttezza, completezza e chiarezza del codice e della documentazione;

corretto impiego delle metodologie spiegate a lezione.

Criteri di composizione del voto finale

attinenza ai requisiti (10 punti);

correttezza, completezza e chiarezza del codice e della documentazione (10 punti);

corretto impiego delle metodologie spiegate a lezione (10 punti).

Lingua dell'esame

Italiano

Tipologia di Attività formativa D e F

Le attività formative di tipologia D sono a scelta dello studente, quelle di tipologia F sono ulteriori conoscenze utili all’inserimento nel mondo del lavoro (tirocini, competenze trasversali, project works, ecc.). In base al Regolamento Didattico del Corso, alcune attività possono essere scelte e inserite autonomamente a libretto, altre devono essere approvate da apposita commissione per verificarne la coerenza con il piano di studio. Le attività formative di tipologia D o F possono essere ricoperte dalle seguenti attività.

1. Insegnamenti impartiti presso l'Università di Verona

Comprendono gli insegnamenti sotto riportati e/o nel Catalogo degli insegnamenti (che può essere filtrato anche per lingua di erogazione tramite la Ricerca avanzata).

Modalità di inserimento a libretto: se l'insegnamento è compreso tra quelli sottoelencati, lo studente può inserirlo autonomamente durante il periodo in cui il piano di studi è aperto; in caso contrario, lo studente deve fare richiesta alla Segreteria, inviando a carriere.scienze@ateneo.univr.it il modulo nel periodo indicato.

2. Attestato o equipollenza linguistica CLA

Oltre a quelle richieste dal piano di studi, per gli immatricolati dall'A.A. 2021/2022 vengono riconosciute:

  • Lingua inglese: vengono riconosciuti 3 CFU per ogni livello di competenza superiore a quello richiesto dal corso di studio (se non già riconosciuto nel ciclo di studi precedente).
  • Altre lingue e italiano per stranieri: vengono riconosciuti 3 CFU per ogni livello di competenza a partire da A2 (se non già riconosciuto nel ciclo di studi precedente).

Tali cfu saranno riconosciuti, fino ad un massimo di 6 cfu complessivi, di tipologia F se il piano didattico lo consente, oppure di tipologia D. Ulteriori crediti a scelta per conoscenze linguistiche potranno essere riconosciuti solo se coerenti con il progetto formativo dello studente e se adeguatamente motivati.

Gli immatricolati fino all'A.A. 2020/2021 devono consultare le informazioni che si trovano qui.

Modalità di inserimento a librettorichiedere l’attestato o l'equipollenza al CLA e inviarlo alla Segreteria Studenti - Carriere per l’inserimento dell’esame in carriera, tramite mail: carriere.scienze@ateneo.univr.it

3. Competenze trasversali

Scopri i percorsi formativi promossi dal TALC - Teaching and learning center dell'Ateneo, destinati agli studenti regolarmente iscritti all'anno accademico di erogazione del corso https://talc.univr.it/it/competenze-trasversali

Modalità di inserimento a libretto: non è previsto l'inserimento dell'insegnamento nel piano di studi. Solo in seguito all'ottenimento dell'Open Badge verranno automaticamente convalidati i CFU a libretto. La registrazione dei CFU in carriera non è istantanea, ma ci saranno da attendere dei tempi tecnici.  

4. Periodo di stage/tirocinio

Oltre ai CFU previsti dal piano di studi (verificare attentamente quanto indicato sul Regolamento Didattico): qui informazioni su come attivare lo stage. 

Verificare nel regolamento quali attività possono essere di tipologia D e quali di tipologia F.

Insegnamenti e altre attività che si possono inserire autonomamente a libretto

 

Elenco degli insegnamenti con periodo non assegnato
anni Insegnamenti TAF Docente
1° 2° Federated learning from zero to hero D Non ancora assegnato
1° 2° Introduzione alla robotica per studenti di materie scientifiche D Non ancora assegnato
1° 2° Introduzione alla stampa 3D D Non ancora assegnato
1° 2° Linguaggio Programmazione Matlab-Simulink D Non ancora assegnato
1° 2° Linguaggio programmazione Python D Non ancora assegnato
1° 2° Progettazione di componenti hardware su FPGA D Non ancora assegnato
1° 2° Prototipizzazione con Arduino D Non ancora assegnato
1° 2° Sfide di programmazione D Non ancora assegnato
1° 2° Tutela dei beni immateriali (SW e invenzione) tra diritto industriale e diritto d’autore D Non ancora assegnato

Prospettive


Avvisi degli insegnamenti e del corso di studio

Per la comunità studentesca

Se sei già iscritta/o a un corso di studio, puoi consultare tutti gli avvisi relativi al tuo corso di studi nella tua area riservata MyUnivr.
In questo portale potrai visualizzare informazioni, risorse e servizi utili che riguardano la tua carriera universitaria (libretto online, gestione della carriera Esse3, corsi e-learning, email istituzionale, modulistica di segreteria, procedure amministrative, ecc.).
Entra in MyUnivr con le tue credenziali GIA.

Prova Finale

Per gli scadenziari, gli adempimenti amministrativi e gli avvisi sulle sessioni di laurea, si rimanda al servizio Sessioni di laurea - Scienze e Ingegneria.

Alla tesi di laurea sono dedicati 24 CFU, per un lavoro che non deve superare i 4-5 mesi a tempo pieno per la/o studentessa/studente.

Scopo della Tesi di Laurea

La Tesi di Laurea costituisce un importante ed imprescindibile passo nella formazione della/del futura/o laureata/o Magistrale in Ingegneria e Scienze Informatiche. Scopo della tesi è quello di sviluppare uno studio quanto più originale che può culminare con un progetto applicativo o un risultato teorico connesso a specifici problemi di natura progettuale o una rassegna critica sullo stato dell'arte in un determinato ambito di studio. Su proposta della/del relatrice/relatore, può essere compilato e discusso in lingua straniera. Nel corso dello svolgimento della Tesi il laureando dovrà, sotto la guida della relatrice/relatore ed eventuali correlatrici/correlatori, affrontare lo studio e l'approfondimento degli argomenti scelti, ma anche acquisire capacità di sintesi e applicazione creativa delle conoscenze acquisite. Il contenuto della Tesi deve essere inerente a tematiche dell'ingegneria e delle Scienze Informatiche o discipline strettamente correlate. La Tesi consiste nella presentazione in forma scritta di attività che possono essere articolate come:

i) progettazione e sviluppo di applicazioni o sistemi;

ii) analisi critica di contributi tratti dalla letteratura scientifica;

iii) contributi originali di ricerca.

La Tesi può essere redatta sia in lingua inglese che in lingua italiana, e può essere discussa sia in inglese che in italiano, anche mediante l'ausilio di supporti multimediali quali slide, filmati, immagini e suoni. Nel caso di tesi redatta in lingua italiana alla medesima dovrà essere aggiunto un breve riassunto in lingua inglese.

Modalità di svolgimento e valutazione

Ogni Tesi di Laurea può essere interna o esterna a seconda che sia svolta presso l'Università di Verona o in collaborazione con altro ente, rispettivamente. Ogni Tesi prevede una/un relatrice/relatore eventualmente affiancata/o da una/uno o più correlatrici/correlatori e una/un controrelatrice/controrelatore. La/il controrelatrice/controrelatore è nominata/o dal Collegio Didattico di Informatica almeno 20 giorni prima della discussione della Tesi, verificata l'ammissibilità della/o studentessa/studente a sostenere l’esame di Laurea Magistrale. Per quanto riguarda gli aspetti giuridici (e.g., proprietà intellettuale dei risultati) legati alla Tesi e ai risultati ivi contenuti si rimanda alla legislazione vigente in materia ed ai Regolamenti di Ateneo.

Valutazione delle Tesi

I criteri su cui sono chiamati ad esprimersi relatore ed eventuali correlatori e controrelatore sono i seguenti:

1. livello di approfondimento del lavoro svolto, in relazione allo stato dell'arte dei settori disciplinari di pertinenza informatica;

2. avanzamento conoscitivo o tecnologico apportato dalla Tesi;

3. impegno critico espresso dalla/dal laureanda/o;

4. impegno sperimentale e/o di sviluppo formale espresso dal laureando;

5. autonomia di lavoro espressa dalla/dal laureanda/o;

6. significatività delle metodologie impiegate;

7. accuratezza dello svolgimento e della scrittura;

8. la/il controrelatrice/controrelatore non è chiamata/o ad esprimersi sul punto 5.

Voto di Laurea

Il voto di Laurea (espresso in 110mi) è un valore intero compreso tra 66/110 e 110/110 e viene formato dalla somma, arrotondata al numero intero più vicino (e.g., 93.50 diventa 94, 86.49 diventa 86), dei seguenti addendi:

1. media pesata sui crediti e rapportata a 110 dei voti conseguiti negli esami di profitto;

2. valutazione del colloquio di Laurea e della Tesi secondo le seguenti modalità:

a. attribuzione di un coefficiente compreso tra 0 e 1 (frazionario con una cifra decimale) per ciascuno dei punti 1-7 elencati sopra;

b. attribuzione di un coefficiente compreso tra 0 e 1 (frazionario con una cifra decimale) per la qualità della presentazione;

c. somma dei coefficienti attribuiti ai punti a e b.

La presenza di eventuali lodi ottenute negli esami sostenuti, la partecipazione a stage ufficialmente riconosciuti dal Collegio Didattico di Informatica, il superamento di esami in soprannumero ed il raggiungimento della Laurea in tempi contenuti rispetto alla durata legale del corso degli studi possono essere utilizzati dalla Commissione di Laurea per attribuire un ulteriore incremento di un punto.

Qualora la somma ottenuta raggiunga 110/110, la Commissione può decidere l'attribuzione della lode. La lode viene proposta e discussa dalla Commissione, senza l'adozione di particolari meccanismi di calcolo automatico. In base alle norme vigenti, la lode viene attribuita solo se il parere è unanime.

Tesi esterne

Una Tesi esterna viene svolta in collaborazione con un ente diverso dall'Università di Verona. In tal caso, la/il laureanda/o dovrà preventivamente concordare il tema della Tesi con una/un relatrice/relatore dell'Ateneo. Inoltre, è previsto almeno una/un correlatrice/correlatore appartenente all'ente esterno, quale riferimento immediato per la/o studentessa/studente nel corso dello svolgimento dell’attività di Tesi. Relatrice/relatore e correlatrici/correlatori devono essere indicate/i nella domanda di assegnazione Tesi. Le modalità assicurative della permanenza della/o studentessa/studente presso l'Ente esterno sono regolate dalle norme vigenti presso l'Università di Verona. Se la Tesi si configura come un periodo di formazione presso tale ente, allora è necessario stipulare una convenzione tra l'Università e detto ente. I risultati contenuti nella Tesi sono patrimonio in comunione di tutte le persone ed enti coinvolti. In particolare, i contenuti ed i risultati della Tesi sono da considerarsi pubblici. Per tutto quanto riguarda aspetti non strettamente scientifici (e.g. convenzioni, assicurazioni) ci si rifà alla delibera del SA. del 12 gennaio 1999

Relatrice/relatore,correlatrici/correlatori,controrelatrici/controrelatori

La Tesi di Laurea viene presentata da una/un relatrice/relatore docente di ruolo del Dipartimento di Informatica o inquadrato nei SSD ING-INF/05 e INF/01. Oltre a coloro che hanno i requisiti indicati rispetto al ruolo di relatrice/relatore (come indicato sopra), possono svolgere il ruolo di correlatrici/correlatori anche ricercatrici/ricercatori operanti in istituti di ricerca extrauniversitari assegnisti di ricerca, titolari di borsa di studio post-dottorato, dottorandi di ricerca, personale tecnico del Dipartimento, cultrici/cultori della materia nominate/i da un Ateneo italiano ed ancora in vigore, referenti aziendali esperte/i nel settore considerato nella Tesi. Può essere nominata/o controrelatrice/controrelatore qualunque docente professoressa/professore o ricercatrice/ricercatore del Dipartimento di Informatica dell'Università degli Studi di Verona, che risulti particolarmente competente nell'ambito specifico di studio della Tesi.

Elenco delle proposte di tesi e stage

Proposte di tesi Area di ricerca
Analisi ed identificazione automatica del tono/volume della voce AI, Robotics & Automatic Control - AI, Robotics & Automatic Control
Analisi e percezione dei segnali biometrici per l'interazione con robot AI, Robotics & Automatic Control - AI, Robotics & Automatic Control
Integrazione del simulatore del robot Nao con Oculus Rift AI, Robotics & Automatic Control - AI, Robotics & Automatic Control
Tesi in ragionamento automatico Computing Methodologies - ARTIFICIAL INTELLIGENCE
Sviluppo sistemi di scansione 3D Computing Methodologies - COMPUTER GRAPHICS
Sviluppo sistemi di scansione 3D Computing Methodologies - IMAGE PROCESSING AND COMPUTER VISION
Dati geografici Information Systems - INFORMATION SYSTEMS APPLICATIONS
Analisi ed identificazione automatica del tono/volume della voce Robotics - Robotics
Analisi e percezione dei segnali biometrici per l'interazione con robot Robotics - Robotics
Integrazione del simulatore del robot Nao con Oculus Rift Robotics - Robotics
Tesi in ragionamento automatico Theory of computation - Logic
Tesi in ragionamento automatico Theory of computation - Semantics and reasoning
Proposte di tesi/collaborazione/stage in Intelligenza Artificiale Applicata Argomenti vari
Proposte di Tesi/Stage/Progetto nell'ambito delle basi di dati/sistemi informativi Argomenti vari

Modalità di frequenza

Come riportato nel Regolamento Didattico per l'A.A. 2022/2023, la frequenza al corso di studio non è obbligatoria.
Per le modalità di erogazione della didattica, si rimanda alle informazioni in costante aggiornamento dell'Unità di Crisi.


Gestione carriere


Area riservata studenti