Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

A.A. 2018/2019

Academic calendar

Il calendario accademico riporta le scadenze, gli adempimenti e i periodi rilevanti per la componente studentesca, personale docente e personale dell'Università. Sono inoltre indicate le festività e le chiusure ufficiali dell'Ateneo.
L’anno accademico inizia il 1° ottobre e termina il 30 settembre dell'anno successivo.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates. .

Definition of lesson periods
Period From To
I semestre Oct 1, 2018 Jan 31, 2019
II semestre Mar 4, 2019 Jun 14, 2019
Exam sessions
Session From To
Sessione invernale d'esame Feb 1, 2019 Feb 28, 2019
Sessione estiva d'esame Jun 17, 2019 Jul 31, 2019
Sessione autunnale d'esame Sep 2, 2019 Sep 30, 2019
Degree sessions
Session From To
Sessione di laurea estiva Jul 22, 2019 Jul 22, 2019
Sessione di laurea autunnale Oct 15, 2019 Oct 15, 2019
Sessione di laurea autunnale straordinaria Nov 21, 2019 Nov 21, 2019
Sessione di laurea invernale Mar 19, 2020 Mar 19, 2020
Holidays
Period From To
Sospensione attività didattica Nov 2, 2018 Nov 3, 2018
Vacanze di Natale Dec 24, 2018 Jan 6, 2019
Vacanze di Pasqua Apr 19, 2019 Apr 28, 2019
Vacanze estive Aug 5, 2019 Aug 18, 2019

Exam calendar

The exam roll calls are centrally administered by the operational unit   Science and Engineering Teaching and Student Services Unit
Exam Session Calendar and Roll call enrolment   sistema ESSE3 . If you forget your password to the online services, please contact the technical office in your Faculty or to the service credential recovery .

Exam calendar

Per dubbi o domande Read the answers to the more serious and frequent questions - F.A.Q. Examination enrolment

Academic staff

A B C D G M O P R S Z

Albi Giacomo

giacomo.albi@univr.it +39 045 802 7913

Angeleri Lidia

lidia.angeleri@univr.it 045 802 7911

Baldo Sisto

sisto.baldo@univr.it 045 802 7935

Bos Leonard Peter

leonardpeter.bos@univr.it +39 045 802 7987

Boscaini Maurizio

maurizio.boscaini@univr.it

Busato Federico

federico.busato@univr.it

Caliari Marco

marco.caliari@univr.it +39 045 802 7904

Canevari Giacomo

giacomo.canevari@univr.it +39 045 8027979

Chignola Roberto

roberto.chignola@univr.it 045 802 7953

Cordoni Francesco Giuseppe

francescogiuseppe.cordoni@univr.it

Daffara Claudia

claudia.daffara@univr.it +39 045 802 7942

Daldosso Nicola

nicola.daldosso@univr.it +39 045 8027076 - 7828 (laboratorio)

De Sinopoli Francesco

francesco.desinopoli@univr.it 045 842 5450

Di Persio Luca

luca.dipersio@univr.it +39 045 802 7968

Gregorio Enrico

Enrico.Gregorio@univr.it 045 802 7937

Magazzini Laura

laura.magazzini@univr.it 045 8028525

Malachini Luigi

luigi.malachini@univr.it 045 8054933

Mantese Francesca

francesca.mantese@univr.it +39 045 802 7978

Mariotto Gino

gino.mariotto@univr.it +39 045 8027031

Mariutti Gianpaolo

gianpaolo.mariutti@univr.it 045 802 8241

Mazzuoccolo Giuseppe

giuseppe.mazzuoccolo@univr.it +39 0458027838

Migliorini Sara

sara.migliorini@univr.it +39 045 802 7908

Orlandi Giandomenico

giandomenico.orlandi at univr.it 045 802 7986

Piccinelli Fabio

fabio.piccinelli@univr.it +39 045 802 7097

Rizzi Romeo

romeo.rizzi@univr.it +39 045 8027088

Sansonetto Nicola

nicola.sansonetto@univr.it 049-8027932

Schuster Peter Michael

peter.schuster@univr.it +39 045 802 7029

Solitro Ugo

ugo.solitro@univr.it +39 045 802 7977

Zuccher Simone

simone.zuccher@univr.it

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.

CURRICULUM TIPO:
TeachingsCreditsTAFSSD
6
A
(MAT/02)
6
B
(MAT/03)
6
C
(SECS-P/01)
6
C
(SECS-P/01)
6
B
(MAT/06)
English B1
6
E
-
TeachingsCreditsTAFSSD
6
C
(SECS-P/05)
12
C
(SECS-S/06)
Final exam
6
E
-

2° Anno

TeachingsCreditsTAFSSD
6
A
(MAT/02)
6
B
(MAT/03)
6
C
(SECS-P/01)
6
C
(SECS-P/01)
6
B
(MAT/06)
English B1
6
E
-

3° Anno

TeachingsCreditsTAFSSD
6
C
(SECS-P/05)
12
C
(SECS-S/06)
Final exam
6
E
-
Teachings Credits TAF SSD
Between the years: 1°- 2°- 3°
Between the years: 1°- 2°- 3°
Other activities
6
F
-

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




SPlacements in companies, public or private institutions and professional associations

Teaching code

4S00393

Coordinatore

Luigi Malachini

Credits

12

Scientific Disciplinary Sector (SSD)

SECS-S/06 - MATHEMATICAL METHODS OF ECONOMICS, FINANCE AND ACTUARIAL SCIENCES

Language of instruction

Italian

Period

I semestre dal Oct 1, 2018 al Jan 31, 2019.

Learning outcomes

This course presents the basic models for the analysis and evaluation of financial operations, both under conditions of certainty and randomness. The main goal of the course is to equip the student with the ability to model and solve some basic mathematical problems, commonly encountered in the financial practice.

Program


1. Financial operations. Present and future value. Simple and compound interest. Spot and forward rates. Market rates.
2. Present value of a cash flow. Amortizement of a debt. Computation of the instalments. Choice criteria among cash flows: Net Present Value and Internal Rate of Return. Fixed and floating rate mortgages. Coupon bonds and term structure. Immunization, duration and convexity.
3. Portfolio selection. Investing in stocks. Expected return and volatility of a portfolio. Risk aversion and Markowitz criterium. Efficient portfolios when investing in: a stock and a bond, two stocks, two stocks and a bond. Constrained optimization techniques (Lagrange) Covariance matrix and efficient portfolios with N stocks. The Capital Market Line and the Capital Asset Pricing Model.
4. Derivatives: Futures, Forward, Swap, Options, Credit Default Swap

Bibliografia

Reference texts
Author Title Publishing house Year ISBN Notes
P. Bortot, U. Magnani, G. Olivieri, F. A. Rossi, M. Torrigiani Matematica finanziaria Monduzzi 1998
Scandolo Giacomo Matematica finanziaria - Esercizi Amon 2013
John C. Hull Options, Futures, and Other Derivatives Prentice Hall College Div  

Examination Methods

The exam consists of a written test to solve a number of practical problems to ensure the achievement of the learning objectives (for both attending and non-attending students). The exam aims to verify the student's ability to identify the correct resolution, knowledge of basic financial laws and sophisticated assessment models, and the ability to apply acquired knowledge to concrete cases in new and variable contexts. Attending and non-attending students will be able to count on the material provided to the teacher: lesson slides and practical problems faced in class. Attending students will also be able to participate in the exercises conducted by an external exercitat. The teacher is also available at the student reception.

Tipologia di Attività formativa D e F

Primo semestre From 10/4/21 To 1/28/22
years Teachings TAF Teacher
1° 2° 3° Basis of general chemistry D Chiara Nardon

Career prospects


Avvisi degli insegnamenti e del corso di studio

Per la comunità studentesca

Se sei già iscritta/o a un corso di studio, puoi consultare tutti gli avvisi relativi al tuo corso di studi nella tua area riservata MyUnivr.
In questo portale potrai visualizzare informazioni, risorse e servizi utili che riguardano la tua carriera universitaria (libretto online, gestione della carriera Esse3, corsi e-learning, email istituzionale, modulistica di segreteria, procedure amministrative, ecc.).
Entra in MyUnivr con le tue credenziali GIA.

Gestione carriere


Graduation

Allegati

List of theses and work experience proposals

theses proposals Research area
Formule di rappresentazione per gradienti generalizzati Mathematics - Analysis
Formule di rappresentazione per gradienti generalizzati Mathematics - Mathematics
Mathematics Bachelor and Master thesis titles Various topics
Stage Research area
Internship proposals for students in mathematics Various topics

Modalità di frequenza

Come riportato al punto 25 del Regolamento Didattico per l'A.A. 2021/2022, la frequenza è in generale non obbligatoria, con la sola eccezione di alcune attività laboratoriali. Per queste sarà chiaramente indicato nella scheda del corrispondente insegnamento l'ammontare di ore per cui è richiesta la frequenza obbligatoria.

Further services

I servizi e le attività di orientamento sono pensati per fornire alle future matricole gli strumenti e le informazioni che consentano loro di compiere una scelta consapevole del corso di studi universitario.