Studying at the University of Verona

A.A. 2017/2018

Academic calendar

Il calendario accademico riporta le scadenze, gli adempimenti e i periodi rilevanti per la componente studentesca, personale docente e personale dell'Università. Sono inoltre indicate le festività e le chiusure ufficiali dell'Ateneo.
L’anno accademico inizia il 1° ottobre e termina il 30 settembre dell'anno successivo.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates. .

Definition of lesson periods
Period From To
I - II semestre Oct 2, 2017 Jun 15, 2018
I sem. Oct 2, 2017 Jan 31, 2018
II sem. Mar 1, 2018 Jun 15, 2018
Exam sessions
Session From To
Sessione invernale d'esami Feb 1, 2018 Feb 28, 2018
Sessione estiva d'esame Jun 18, 2018 Jul 31, 2018
Sessione autunnale d'esame Sep 3, 2018 Sep 28, 2018
Degree sessions
Session From To
Sessione di laurea estiva Jul 23, 2018 Jul 23, 2018
Sessione di laurea autunnale Oct 17, 2018 Oct 17, 2018
Sessione autunnale di laurea Nov 23, 2018 Nov 23, 2018
Sessione di laurea invernale Mar 22, 2019 Mar 22, 2019
Holidays
Period From To
Christmas break Dec 22, 2017 Jan 7, 2018
Easter break Mar 30, 2018 Apr 3, 2018
Patron Saint Day May 21, 2018 May 21, 2018
VACANZE ESTIVE Aug 6, 2018 Aug 19, 2018

Exam calendar

The exam roll calls are centrally administered by the operational unit   Science and Engineering Teaching and Student Services Unit
Exam Session Calendar and Roll call enrolment   sistema ESSE3 . If you forget your password to the online services, please contact the technical office in your Faculty or to the service credential recovery .

Exam calendar

Per dubbi o domande Read the answers to the more serious and frequent questions - F.A.Q. Examination enrolment

Academic staff

A B C D G M O R S Z

Albi Giacomo

giacomo.albi@univr.it +39 045 802 7913

Angeleri Lidia

lidia.angeleri@univr.it 045 802 7911

Baldo Sisto

sisto.baldo@univr.it 045 802 7935

Bos Leonard Peter

leonardpeter.bos@univr.it +39 045 802 7987

Boscaini Maurizio

maurizio.boscaini@univr.it

Busato Federico

federico.busato@univr.it

Caliari Marco

marco.caliari@univr.it +39 045 802 7904

Cordoni Francesco Giuseppe

francescogiuseppe.cordoni@univr.it

Daffara Claudia

claudia.daffara@univr.it +39 045 802 7942

Daldosso Nicola

nicola.daldosso@univr.it +39 045 8027076 - 7828 (laboratorio)

De Sinopoli Francesco

francesco.desinopoli@univr.it 045 842 5450

Di Persio Luca

luca.dipersio@univr.it +39 045 802 7968

Gregorio Enrico

Enrico.Gregorio@univr.it 045 802 7937

Magazzini Laura

laura.magazzini@univr.it 045 8028525

Malachini Luigi

luigi.malachini@univr.it 045 8054933

Mantese Francesca

francesca.mantese@univr.it +39 045 802 7978

Marigonda Antonio

antonio.marigonda@univr.it +39 045 802 7809

Mariotto Gino

gino.mariotto@univr.it +39 045 8027031

Mariutti Gianpaolo

gianpaolo.mariutti@univr.it 045 802 8241

Mazzuoccolo Giuseppe

giuseppe.mazzuoccolo@univr.it +39 0458027838

Orlandi Giandomenico

giandomenico.orlandi at univr.it 045 802 7986

Rizzi Romeo

romeo.rizzi@univr.it +39 045 8027088

Rossi Francesco

Schuster Peter Michael

peter.schuster@univr.it +39 045 802 7029

Solitro Ugo

ugo.solitro@univr.it +39 045 802 7977

Zuccher Simone

simone.zuccher@univr.it

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.

CURRICULUM TIPO:
TeachingsCreditsTAFSSD
6
A
(MAT/02)
6
B
(MAT/03)
6
C
(SECS-P/01)
6
C
(SECS-P/01)
6
B
(MAT/06)
TeachingsCreditsTAFSSD
6
C
(SECS-P/05)
12
C
(SECS-S/06)
Final exam
6
E
-

2° Anno

TeachingsCreditsTAFSSD
6
A
(MAT/02)
6
B
(MAT/03)
6
C
(SECS-P/01)
6
C
(SECS-P/01)
6
B
(MAT/06)

3° Anno

TeachingsCreditsTAFSSD
6
C
(SECS-P/05)
12
C
(SECS-S/06)
Final exam
6
E
-
Teachings Credits TAF SSD
Between the years: 1°- 2°- 3°
Between the years: 1°- 2°- 3°
Other activitites
6
F
-

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




SPlacements in companies, public or private institutions and professional associations

Teaching code

4S00247

Credits

6

Scientific Disciplinary Sector (SSD)

MAT/03 - GEOMETRY

Language of instruction

Italian

Period

II sem. dal Mar 1, 2018 al Jun 15, 2018.

Learning outcomes

The course aims to provide students with the basic concepts of the general topology and the basics of differential geometry of curves and surfaces embedded in an Euclidean space.
At the end of the course, the student has a general and complete vision of topological properties in a wider context than that of real Euclidean spaces. He/She be able to recognize and compute the main geometrical characteristics of a curve and of a surface (Frenet frames, curvatures, fundamental quadratic forms ...). He/She also be able to produce rigorous arguments and proofs on these topics and he/she can read papers and advanced texts on Topology and Differential Geometry.

Program

The course includes lectures, exercises sessions, and an exam. There will also be 12 hours of tutoring that will focus in particular on the resolution of topology exercises.

-General Topology.

Topological space, definition. Examples: trivial topology, discrete topology, discrete topology, cofinite topology. Comparison of topologies. Basis. Neighbourhoods. Closure. Contnuos applications. Homeomorphisms. Limit points and isolated points. Dense set. Topological subspace, induced topology. Product spaces.
Separation axioms. Hausdorff spaces, Normal spaces, Regular spaces.
Countability axioms. Quotient space. Open and closed applications.
Relevant examples: sphere, projective space, Moebius strip...
Compactness. Heine-Borel Theorem. Tychonoff Theorem. Bolzano-Weierstrass Theorem.
Connectivity, local connectivity. Path connectivity. Examples and counterexamples. Simply connected, homotopy and fundamental group. Jordan curve Theorem.

-Differential geometry of curves.

Curves in the plane:
Examples. Regular points and singular points. Embedding and immersion. Vector fields along a curve. Tangent vector and line. Length of an arc. Parametrization by arc-length. Inflection points. Curvature and radius of curvature. Center of curvature. Frenet-Serret formula.
Curves in the space:
Tangent line. Normal plane. Inflection points. Osculator plane. Curvatures. Principal frame. Frenet-Serret formula. Torsion. Fundamental Theorem.

-Differential geometry of surfaces.

Definitions. Differentiable atlas. Oriented atlas, Tangent plane, Normal versor.
First fundamental quadratic form: metric and area. Tangential curvature and normal curvature of a curve on a surface. Curvatures, normal sections, Meusnier Theorem. Principal curvatures, Gaussian curvature and mean curvature: Theorem Egregium. Geodetics.

Bibliografia

Reference texts
Author Title Publishing house Year ISBN Notes
Abate, Tovena Curve e Superfici (Edizione 1) Springer 2006
Kosniowski Introduzione alla topologia algebrica (Edizione 1) Zanichelli 1988

Examination Methods

To pass the exam, students must show that:
- they know and understand the fundamental concepts of general topology
- they know and understand the fundamental concepts of local theory of curves and surfaces
- they have analysis and abstraction abilities
- they can apply this knowledge in order to solve problems and exercises and they can rigorously support their arguments.

Written test (2 hours).
The exam consists of four exercises (2 on topology, 1 on curve theory and 1 on surfaces theory) and two questions (1 on general definition / concepts and 1 with a proof of a theorem presented during the lectures).

Oral Test (Optional)
It is a discussion with the lecturer on definitions and proofs discussed during the lessons.

Tipologia di Attività formativa D e F

Primo semestre From 10/4/21 To 1/28/22
years Teachings TAF Teacher
1° 2° 3° Basis of general chemistry D Chiara Nardon

Career prospects


Avvisi degli insegnamenti e del corso di studio

Per la comunità studentesca

Se sei già iscritta/o a un corso di studio, puoi consultare tutti gli avvisi relativi al tuo corso di studi nella tua area riservata MyUnivr.
In questo portale potrai visualizzare informazioni, risorse e servizi utili che riguardano la tua carriera universitaria (libretto online, gestione della carriera Esse3, corsi e-learning, email istituzionale, modulistica di segreteria, procedure amministrative, ecc.).
Entra in MyUnivr con le tue credenziali GIA.

Graduation

Allegati

List of theses and work experience proposals

theses proposals Research area
Formule di rappresentazione per gradienti generalizzati Mathematics - Analysis
Formule di rappresentazione per gradienti generalizzati Mathematics - Mathematics
Mathematics Bachelor and Master thesis titles Various topics
Stage Research area
Internship proposals for students in mathematics Various topics

Gestione carriere


Modalità di frequenza

Come riportato al punto 25 del Regolamento Didattico per l'A.A. 2021/2022, la frequenza è in generale non obbligatoria, con la sola eccezione di alcune attività laboratoriali. Per queste sarà chiaramente indicato nella scheda del corrispondente insegnamento l'ammontare di ore per cui è richiesta la frequenza obbligatoria.

Further services

I servizi e le attività di orientamento sono pensati per fornire alle future matricole gli strumenti e le informazioni che consentano loro di compiere una scelta consapevole del corso di studi universitario.