Studiare

In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.

Queste informazioni sono destinate esclusivamente agli studenti e alle studentesse già iscritti a questo corso.
Se sei un nuovo studente interessato all'immatricolazione, trovi le informazioni sul percorso di studi alla pagina del corso:

Laurea in Matematica applicata - Immatricolazione dal 2025/2026

Il piano didattico è l'elenco degli insegnamenti e delle altre attività formative che devono essere sostenute nel corso della propria carriera universitaria.
Selezionare il piano didattico in base all'anno accademico di iscrizione.

CURRICULUM TIPO:

2° Anno   Attivato nell'A.A. 2020/2021

InsegnamentiCreditiTAFSSD
6
B
MAT/03
6
A
MAT/02
6
C
SECS-P/01
6
C
SECS-P/01
Lingua inglese B1
6
E
-

3° Anno   Attivato nell'A.A. 2021/2022

InsegnamentiCreditiTAFSSD
6
C
SECS-P/05
Prova finale
6
E
-
Attivato nell'A.A. 2020/2021
InsegnamentiCreditiTAFSSD
6
B
MAT/03
6
A
MAT/02
6
C
SECS-P/01
6
C
SECS-P/01
Lingua inglese B1
6
E
-
Attivato nell'A.A. 2021/2022
InsegnamentiCreditiTAFSSD
6
C
SECS-P/05
Prova finale
6
E
-
Insegnamenti Crediti TAF SSD
Tra gli anni: 1°- 2°- 3°
Tra gli anni: 1°- 2°- 3°
Ulteriori attività formative
6
F
-

Legenda | Tipo Attività Formativa (TAF)

TAF (Tipologia Attività Formativa) Tutti gli insegnamenti e le attività sono classificate in diversi tipi di attività formativa, indicati da una lettera.




S Stage e tirocini presso imprese, enti pubblici o privati, ordini professionali

Codice insegnamento

4S00704

Coordinatore

Marco Caliari

Crediti

6

Lingua di erogazione

Italiano

Settore Scientifico Disciplinare (SSD)

MAT/08 - ANALISI NUMERICA

Periodo

Primo semestre dal 4 ott 2021 al 28 gen 2022.

Obiettivi formativi

L'insegnamento si propone di presentare, da un punto di vista analitico e computazionale, i principali metodi numerici per la soluzione di equazioni differenziali ordinarie e di equazioni differenziali alle derivate parziali classiche. Verranno brevemente descritti anche gli integratori esponenziali, metodi d'avanguardia nel campo della Matematica Applicata. L'insegnamento è corredato da una importante parte di laboratorio in cui si implementano e si testano i metodi studiati. Il linguaggio di programmazione usato sarà MATLAB che potrà essere usato attraverso il software specifico Matlab di Mathworks oppure il software open source GNU Octave. Al termine dell'insegnamento lo studente dovrà dimostrare di aver raggiunto adeguate competenze computazionali ed informatiche nell'ambito dei metodi numerici per le equazioni differenziali, da usarsi in aiuto ai processi matematici e per acquisire ulteriori informazioni.

Programma

Prerequisiti: algebra lineare, calcolo differenziale in una e più variabili, calcolo integrale, nozioni fondamentali di equazioni differenziali, principali metodi del calcolo numerico.

L'insegnamento sarà erogato in 52 ore, di cui 20 circa in laboratorio informatico.

Nell'insegnamento verranno trattati i seguenti argomenti:

* Problemi ai limiti: metodi alle differenze finite e agli elementi finiti, cenni ai metodi spettrali (collocazione e Galerkin).

* Equazioni differenziali ordinarie: metodi numerici per problemi a valori iniziali, metodi ad un passo (theta-metodo, Runge-Kutta a passo variabile, cenni a integratori esponenziali) e multistep, stabilità, assoluta stabilità.

* Equazioni differenziali alle derivate parziali: generalità e studio di alcune tra le equazioni alle derivate parziali classiche (calore e trasporto), metodo delle linee.

Si prevede l'ausilio di attività di tutorato per ricevimento e correzione di esercizi assegnati durante lo svolgimento delle lezioni.

Bibliografia

Visualizza la bibliografia con Leganto, strumento che il Sistema Bibliotecario mette a disposizione per recuperare i testi in programma d'esame in modo semplice e innovativo.

Modalità d'esame

L'esame intende accertare che lo studente sia in grado di produrre e riconoscere dimostrazioni rigorose nell'ambito dei metodi numerici per le equazioni differenziali, sappia usare strumenti informatici in aiuto ai processi matematici e per acquisire ulteriori informazioni. Inoltre, lo studente dovrà dimostrare di conoscere un linguaggio di programmazione e di un software specifico. La modalità d'esame è sia scritta (risoluzione al calcolatore di esercizi assegnati entro un tempo prestabilito, con possibilità di consultare qualunque materiale) e orale (dedicata alla teoria), a cui si è ammessi solo dopo aver superato la parte scritta.
La modalità d'esame potrebbe subire variazioni dipendenti dall'evoluzione della situazione.

Le/gli studentesse/studenti con disabilità o disturbi specifici di apprendimento (DSA), che intendano richiedere l'adattamento della prova d'esame, devono seguire le indicazioni riportate QUI