Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Academic calendar
The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.
Course calendar
The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..
Period | From | To |
---|---|---|
Primo semestre | Oct 4, 2021 | Jan 28, 2022 |
Secondo semestre | Mar 7, 2022 | Jun 10, 2022 |
Session | From | To |
---|---|---|
Sessione invernale d'esame | Jan 31, 2022 | Mar 4, 2022 |
Sessione estiva d'esame | Jun 13, 2022 | Jul 29, 2022 |
Sessione autunnale d'esame | Sep 1, 2022 | Sep 30, 2022 |
Session | From | To |
---|---|---|
Sessione estiva di laurea | Jul 21, 2022 | Jul 21, 2022 |
Sessione autunnale di laurea | Oct 13, 2022 | Oct 13, 2022 |
Sessione autunnale di laurea - dicembre | Dec 7, 2022 | Dec 7, 2022 |
Sessione invernale | Mar 16, 2023 | Mar 16, 2023 |
Period | From | To |
---|---|---|
Festa di Tutti i Santi | Nov 1, 2021 | Nov 1, 2021 |
Festa dell'Immacolata Concezione | Dec 8, 2021 | Dec 8, 2021 |
Festività natalizie | Dec 24, 2021 | Jan 2, 2022 |
VACANZE DI PASQUA | Apr 15, 2022 | Apr 19, 2022 |
FESTA DEL LAVORO | May 1, 2022 | May 1, 2022 |
Festa di San Zeno - S. Patrono di Verona | May 21, 2022 | May 21, 2022 |
Festa della Repubblica | Jun 2, 2022 | Jun 2, 2022 |
Chiusura estiva | Aug 15, 2022 | Aug 20, 2022 |
Exam calendar
Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.
Academic staff
Study Plan
The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.
1° Year
Modules | Credits | TAF | SSD |
---|
2° Year activated in the A.Y. 2022/2023
Modules | Credits | TAF | SSD |
---|
3° Year activated in the A.Y. 2023/2024
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Legend | Type of training activity (TTA)
TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.
Type D and Type F activities
Le attività formative di tipologia D sono a scelta dello studente, quelle di tipologia F sono ulteriori conoscenze utili all’inserimento nel mondo del lavoro (tirocini, competenze trasversali, project works, ecc.). In base al Regolamento Didattico del Corso, alcune attività possono essere scelte e inserite autonomamente a libretto, altre devono essere approvate da apposita commissione per verificarne la coerenza con il piano di studio. Le attività formative di tipologia D o F possono essere ricoperte dalle seguenti attività.
1. Insegnamenti impartiti presso l'Università di Verona
Comprendono gli insegnamenti sotto riportati e/o nel Catalogo degli insegnamenti (che può essere filtrato anche per lingua di erogazione tramite la Ricerca avanzata).
Modalità di inserimento a libretto: se l'insegnamento è compreso tra quelli sottoelencati, lo studente può inserirlo autonomamente durante il periodo in cui il piano di studi è aperto; in caso contrario, lo studente deve fare richiesta alla Segreteria, inviando a carriere.scienze@ateneo.univr.it il modulo nel periodo indicato.
2. Attestato o equipollenza linguistica CLA
Oltre a quelle richieste dal piano di studi, per gli immatricolati dall'A.A. 2021/2022 vengono riconosciute:
- Lingua inglese: vengono riconosciuti 3 CFU per ogni livello di competenza superiore a quello richiesto dal corso di studio (se non già riconosciuto nel ciclo di studi precedente).
- Altre lingue e italiano per stranieri: vengono riconosciuti 3 CFU per ogni livello di competenza a partire da A2 (se non già riconosciuto nel ciclo di studi precedente).
Tali cfu saranno riconosciuti, fino ad un massimo di 6 cfu complessivi, di tipologia F se il piano didattico lo consente, oppure di tipologia D. Ulteriori crediti a scelta per conoscenze linguistiche potranno essere riconosciuti solo se coerenti con il progetto formativo dello studente e se adeguatamente motivati.
Gli immatricolati fino all'A.A. 2020/2021 devono consultare le informazioni che si trovano qui.
Modalità di inserimento a libretto: richiedere l’attestato o l'equipollenza al CLA e inviarlo alla Segreteria Studenti - Carriere per l’inserimento dell’esame in carriera, tramite mail: carriere.scienze@ateneo.univr.it
3. Competenze trasversali
Scopri i percorsi formativi promossi dal TALC - Teaching and learning center dell'Ateneo, destinati agli studenti regolarmente iscritti all'anno accademico di erogazione del corso https://talc.univr.it/it/competenze-trasversali
Modalità di inserimento a libretto: non è previsto l'inserimento dell'insegnamento nel piano di studi. Solo in seguito all'ottenimento dell'Open Badge verranno automaticamente convalidati i CFU a libretto. La registrazione dei CFU in carriera non è istantanea, ma ci saranno da attendere dei tempi tecnici.
4. Periodo di stage/tirocinio
Oltre ai CFU previsti dal piano di studi (verificare attentamente quanto indicato sul Regolamento Didattico): qui informazioni su come attivare lo stage.
Insegnamenti e altre attività che si possono inserire autonomamente a libretto
Documents and news
- Modifiche al piano di studi (.doc) (octet-stream, it, 1314 KB, 30/06/21)
years | Modules | TAF | Teacher |
---|---|---|---|
1° 2° 3° | Algorithms | D |
Roberto Segala
(Coordinator)
|
1° 2° 3° | Basis of general chemistry | D |
Chiara Nardon
|
1° 2° 3° | Genetics | D |
Massimo Delledonne
(Coordinator)
|
years | Modules | TAF | Teacher |
---|---|---|---|
1° 2° 3° | Algorithms | D |
Roberto Segala
(Coordinator)
|
1° 2° 3° | LaTeX Language | D |
Enrico Gregorio
(Coordinator)
|
1° 2° 3° | Organization Studies | D |
Serena Cubico
(Coordinator)
|
1° 2° 3° | History and Didactics of Geology | D |
Guido Gonzato
(Coordinator)
|
years | Modules | TAF | Teacher | |
---|---|---|---|---|
1° | Subject requirements: mathematics | D |
Franco Zivcovich
|
|
1° 2° 3° | ECMI modelling week | F | Not yet assigned | |
1° 2° 3° | ESA Summer of code in space (SOCIS) | F | Not yet assigned | |
1° 2° 3° | Google summer of code (GSOC) | F | Not yet assigned | |
1° 2° 3° | Python programming language | D |
Giulio Mazzi
(Coordinator)
|
Mathematical analysis 2 (2022/2023)
Teaching code
4S00031
Academic staff
Coordinator
Credits
12
Language
Italian
Scientific Disciplinary Sector (SSD)
MAT/05 - MATHEMATICAL ANALYSIS
Period
Semester 1 dal Oct 3, 2022 al Jan 27, 2023.
Learning objectives
Topics treated in this course are: Calculus for functions of several variables, sequences and series of functions, ordinary differential equations, Lebesgue measure and integral. Emphasis will be given to examples and applications. At the end of the course, students must possess adequate skills of synthesis and abstraction. They must recognize and produce rigorous proofs. They must be able to formalize and solve moderately difficult problems on the arguments of the course.
Prerequisites and basic notions
Linear algebra - Calculus 1
Program
Some content will be available online in case of COVID-19 or for students with specific learning needs. In addition, a number of the lessons/all the lessons (see the course
schedule) will be held in-class.
i) Calculus in several variables. Neighborhoods in several variables, continuity in several variables, directional derivatives, differential of functions in several variables, Theorem of Total Differential, gradient of scalar functions, Jacobian matrix for vector-valued functions, level curves of scalar functions. Parametrized surfaces, tangent and normal vectors, changes of coordinates. Higher order derivatives and differentials, Hessian matrix, Schwarz's Theorem, Taylor's Series.
(ii) Optimization problems for functions in several variables. Critical points, free optimization, constrained optimization, Lagrange's Multiplier Theorem, Implicit and inverse function theorem, Contraction Principle.
(iii) Integral of functions in several variables. Fubini and Tonelli theorems, integral on curves, change of variables formula.
(iv) Integral of scalar function on surfaces, vector fields, conservatice vector fields, scalar potentials, curl and divergence of a vector fields, introduction to differential forms, closed and exact forms, Poincare lemma, Gauss-Green formulas.
(v) Flux through surfaces, Stokes' Theorem, Divergence Theorem
(vi) Introduction to metric spaces and normed spaces, spaces of functions, sequence of functions, uniform convergence, function series, total convergence, derivation and integration of a series of functions.
(vii) Introduction to Lebesgue's Measure Theory. Measurable sets and functions, stability of measurable functions, simple functions, approximation results, Lebesgue integral. Monotone Convergence Theorem, Fatou's Lemma, Dominated convergence Theorem and their consequences.
(viii) Ordinary differential equation, existence and uniqueness results, Cauchy-Lipschitz's Theorem. Extension of a solution, maximal solution, existence and uniqueness results for systems of ODE, linear ODE of order n, Variation of the constants method,
other resolutive formulas.
(ix) Fourier's series for periodic functions, convergence results, application to solutions of some PDE.
Bibliography
Didactic methods
In presence teaching. Online multimedia resources on the e-learning platform of the course.
Learning assessment procedures
The final exam consists of a written test followed, in case of a positive result, by an oral test. The written test consists of some exercises on the program: students are exonerated from the first part of the test in the winter session of February if they pass a mid-term test at the beginning of December.
Evaluation criteria
The written test evaluates the ability of students at solving problems pertaining to the syllabus of the course, and also their skills in the analysis, synthesis and abstraction of questions stated either in the natural language or in the specific language of mathematics. The written test is graded on a scale from 0 to 30 points (best), with a pass mark of 18/30..
The oral test will concentrate mainly but not exclusively on the theory. It aims at verifying the ability of students at constructing correct and rigorous proofs and their skills in analysis, synthesis and abstraction. The oral exam is graded on a scale from -5 to +5 point, which are added to the marks earned in the written test. Finally, homework exercises will be graded from 0 to 2 points.
Criteria for the composition of the final grade
final grade=mark of the written test + mark of the oral exam + mark for the homework.
Exam language
italiano
Career prospects
Module/Programme news
News for students
There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details: only in this way will you be able to receive notification of all the notices from your teachers and your secretariat via email and also via the Univr app.
Graduation
Documents
Title | Info File |
---|---|
1. Come scrivere una tesi | pdf, it, 31 KB, 29/07/21 |
2. How to write a thesis | pdf, it, 31 KB, 29/07/21 |
5. Regolamento tesi | pdf, it, 171 KB, 20/03/24 |
List of thesis proposals
theses proposals | Research area |
---|---|
Formule di rappresentazione per gradienti generalizzati | Mathematics - Analysis |
Formule di rappresentazione per gradienti generalizzati | Mathematics - Mathematics |
Proposte Tesi A. Gnoatto | Various topics |
Mathematics Bachelor and Master thesis titles | Various topics |
Attendance modes and venues
As stated in the Teaching Regulations , except for specific practical or lab activities, attendance is not mandatory. Regarding these activities, please see the web page of each module for information on the number of hours that must be attended on-site.
Part-time enrolment is permitted. Find out more on the Part-time enrolment possibilities page.
The course's teaching activities take place in the Science and Engineering area, which consists of the buildings of Ca‘ Vignal 1, Ca’ Vignal 2, Ca' Vignal 3 and Piramide, located in the Borgo Roma campus.
Lectures are held in the classrooms of Ca‘ Vignal 1, Ca’ Vignal 2 and Ca' Vignal 3, while practical exercises take place in the teaching laboratories dedicated to the various activities.
Career management
Student login and resources
Erasmus+ and other experiences abroad
Ongoing orientation for students
The committee has the task of guiding the students throughout their studies, guiding them in their choice of educational pathways, making them active participants in the educational process and helping to overcome any individual difficulties.
It is composed of professors Lidia Angeleri, Sisto Baldo, Marco Caliari, Paolo dai Pra, Francesca Mantese, and Nicola Sansonetto
To send an email to professors: name.surname@univr.it