Studiare
In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.
Piano Didattico
Il piano didattico è l'elenco degli insegnamenti e delle altre attività formative che devono essere sostenute nel corso della propria carriera universitaria.
Selezionare il piano didattico in base all'anno accademico di iscrizione.
1° Anno
Insegnamenti | Crediti | TAF | SSD |
---|
2° Anno Attivato nell'A.A. 2011/2012
Insegnamenti | Crediti | TAF | SSD |
---|
Uno tra i seguenti due insegnamenti
3° Anno Attivato nell'A.A. 2012/2013
Insegnamenti | Crediti | TAF | SSD |
---|
Uno da 12 cfu o due da 6 cfu tra i seguenti tre insegnamenti
Insegnamenti | Crediti | TAF | SSD |
---|
Insegnamenti | Crediti | TAF | SSD |
---|
Uno tra i seguenti due insegnamenti
Insegnamenti | Crediti | TAF | SSD |
---|
Uno da 12 cfu o due da 6 cfu tra i seguenti tre insegnamenti
Insegnamenti | Crediti | TAF | SSD |
---|
Legenda | Tipo Attività Formativa (TAF)
TAF (Tipologia Attività Formativa) Tutti gli insegnamenti e le attività sono classificate in diversi tipi di attività formativa, indicati da una lettera.
Modelli matematici per la biologia (2011/2012)
Codice insegnamento
4S00256
Docente
Coordinatore
Crediti
6
Lingua di erogazione
Italiano
Settore Scientifico Disciplinare (SSD)
MAT/07 - FISICA MATEMATICA
Periodo
II semestre dal 1 mar 2012 al 15 giu 2012.
Obiettivi formativi
Comprensione dei principali strumenti matematici, locali e globali, analitici e geometrici, necessari allo studio dei modelli meccanici e biologici descritti da equazioni e sistemi differenziali ordinari.
Programma
Sistemi dinamici discreti e continui, generalità. Sistemi lineari e non lineari, integrabilità, flusso, integrali primi. Equilibri e stabilità, studio degli autovalori, metodo di Lyapunov. Equazioni di Eulero-Lagrange, trasformata di Legendre, equazioni di Hamilton e sistemi Hamiltoniani. Applicazione a modelli biologici di crescita delle popolazioni di tipo malthusiano o logistico, il sistema predatore-preda di Lotka-Volterra. Modellizzazione e analisi di vari fenomeni fisici.
Il corso sarà basato principalmente:
Per la prima parte, sul volume:
Introduzione all'Analisi Qualitativa delle Equazioni Differenziali Ordinarie
Marco Squassina, Simone Zuccher
Apogeo Editore 2008, ISBN 9788850310845
http://www.apogeonline.com/libri/9788850310845/scheda
Modalità d'esame
Esame scritto (con eventuale esame orale)