Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Academic calendar
The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.
Course calendar
The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..
For the year 2007/2008 No calendar yet available
Exam calendar
Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.
Academic staff
Fraccarollo Luigi

Giarola Marco
Mastrogiacomo Elisa

Squassina Marco
Venturin Manolo
Study Plan
The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.
In attesa che venga pubblicato il piano didattico 2007/2008, consulta il piano dell'anno accademico in corso al link
Legend | Type of training activity (TTA)
TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.
Numerical methods for differential equations (2009/2010)
Teaching code
4S02852
Teacher
Coordinatore
Credits
6
Language
Italian
Scientific Disciplinary Sector (SSD)
MAT/08 - NUMERICAL ANALYSIS
Period
2nd Semester dal Mar 1, 2010 al Jun 15, 2010.
Location
VERONA
Learning outcomes
The course has the purpose to analyse the main numerical methods for the solution of ordinary and classical partial differential equations, from both the analytic and the computational point of view.
There is an important part in the laboratory, where the studied methods are implemented and tested.
Program
Numerical linear algebra (semiiterative methods for the solution of large ans sparse linear systems).
Ordinary differential equations: numerical methods for initial value problems, one step methods (theta-method, variable step-size Runge-Kutta, exponential integrators) and
multistep, stiff problems, stability;
boundary value problems, finite differences and finite elements methods, spectral methods (collocation and Galerkin).
Partial differential equations: classical equations (Laplace, heat, transport and waves), multidimensional finite differences methods, the method on lines.
Author | Title | Publishing house | Year | ISBN | Notes |
---|---|---|---|---|---|
Arieh Iserles | A First Course in the Numerical Analysis of Differential Equations (Edizione 2) | Cambridge University Press | 2009 | 9780521734905 |
Examination Methods
Oral and written exam
Type D and Type F activities
Training offer to be defined
Career prospects
Module/Programme news
News for students
There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details: only in this way will you be able to receive notification of all the notices from your teachers and your secretariat via email and soon also via the Univr app.
Graduation
Attachments
Title | Info File |
---|---|
![]() |
31 KB, 29/07/21 |
![]() |
31 KB, 29/07/21 |
![]() |
171 KB, 17/02/22 |
List of theses and work experience proposals
theses proposals | Research area |
---|---|
Formule di rappresentazione per gradienti generalizzati | Mathematics - Analysis |
Formule di rappresentazione per gradienti generalizzati | Mathematics - Mathematics |
Proposte Tesi A. Gnoatto | Various topics |
Mathematics Bachelor and Master thesis titles | Various topics |
Stage | Research area |
---|---|
Internship proposals for students in mathematics | Various topics |
Attendance
As stated in the Teaching Regulations for the A.Y. 2022/2023, except for specific practical or lab activities, attendance is not mandatory. Regarding these activities, please see the web page of each module for information on the number of hours that must be attended on-site.
Please refer to the Crisis Unit's latest updates for the mode of teaching.