Studying at the University of Verona

A.A. 2020/2021

Academic calendar

Il calendario accademico riporta le scadenze, gli adempimenti e i periodi rilevanti per la componente studentesca, personale docente e personale dell'Università. Sono inoltre indicate le festività e le chiusure ufficiali dell'Ateneo.
L’anno accademico inizia il 1° ottobre e termina il 30 settembre dell'anno successivo.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates. .

Definition of lesson periods
Period From To
I semestre Oct 1, 2020 Jan 29, 2021
II semestre Mar 1, 2021 Jun 11, 2021
Exam sessions
Session From To
Sessione invernale d'esame Feb 1, 2021 Feb 26, 2021
Sessione estiva d'esame Jun 14, 2021 Jul 30, 2021
Sessione autunnale d'esame Sep 1, 2021 Sep 30, 2021
Degree sessions
Session From To
Sessione Estiva Jul 19, 2021 Jul 19, 2021
Sessione Autunnale Oct 19, 2021 Oct 19, 2021
Sessione Autunnale Dicembre Dec 7, 2021 Dec 7, 2021
Sessione Invernale Mar 17, 2022 Mar 17, 2022
Holidays
Period From To
Festa dell'Immacolata Dec 8, 2020 Dec 8, 2020
Vacanze Natalizie Dec 24, 2020 Jan 3, 2021
Epifania Jan 6, 2021 Jan 6, 2021
Vacanze Pasquali Apr 2, 2021 Apr 5, 2021
Festa del Santo Patrono May 21, 2021 May 21, 2021
Festa della Repubblica Jun 2, 2021 Jun 2, 2021

Exam calendar

The exam roll calls are centrally administered by the operational unit   Science and Engineering Teaching and Student Services Unit
Exam Session Calendar and Roll call enrolment   sistema ESSE3 . If you forget your password to the online services, please contact the technical office in your Faculty or to the service credential recovery .

Exam calendar

Per dubbi o domande Read the answers to the more serious and frequent questions - F.A.Q. Examination enrolment

Academic staff

B C D F G M N O P Q R S T V

Ballottari Matteo

matteo.ballottari@univr.it 045 802 7098

Baruffi Maria Caterina

mariacaterina.baruffi@univr.it +39 045 8028827 - 47

Bicego Manuele

manuele.bicego@univr.it +39 045 802 7072

Bonnici Vincenzo

vincenzo.bonnici@univr.it +39 045 802 7045

Boscaini Maurizio

maurizio.boscaini@univr.it

Capaldi Stefano

stefano.capaldi@univr.it +39 045 802 7907

Cicalese Ferdinando

ferdinando.cicalese@univr.it +39 045 802 7969

Combi Carlo

carlo.combi@univr.it 045 802 7985

Daducci Alessandro

alessandro.daducci@univr.it +39 045 8027025

Della Libera Chiara

chiara.dellalibera@univr.it +39 0458027219

Delledonne Massimo

massimo.delledonne@univr.it 045 802 7962; Lab: 045 802 7058

Dell'Orco Daniele

daniele.dellorco@univr.it +39 045 802 7637

Dominici Paola

paola.dominici@univr.it 045 802 7966; Lab: 045 802 7956-7086

D'Onofrio Mariapina

mariapina.donofrio@univr.it 045 802 7801

Drago Nicola

nicola.drago@univr.it 045 802 7081

Franco Giuditta

giuditta.franco@univr.it +39 045 802 7045

Fummi Franco

franco.fummi@univr.it 045 802 7994

Giachetti Andrea

andrea.giachetti@univr.it +39 045 8027998

Giacobazzi Roberto

roberto.giacobazzi@univr.it +39 045 802 7995

Giorgetti Alejandro

alejandro.giorgetti@univr.it 045 802 7982

Gregorio Enrico

Enrico.Gregorio@univr.it 045 802 7937

Maris Bogdan Mihai

bogdan.maris@univr.it +39 045 802 7074

Menegaz Gloria

gloria.menegaz@univr.it +39 045 802 7024

Migliorini Sara

sara.migliorini@univr.it +39 045 802 7908

Monti Francesca

francesca.monti@univr.it 045 802 7910

Nardon Chiara

chiara.nardon@univr.it

Oliboni Barbara

barbara.oliboni@univr.it +39 045 802 7077

Posenato Roberto

roberto.posenato@univr.it +39 045 802 7967

Quaglia Davide

davide.quaglia@univr.it +39 045 802 7811

Romeo Alessandro

alessandro.romeo@univr.it +39 045 802 7974-7936; Lab: +39 045 802 7808

Spoto Nicola Fausto

fausto.spoto@univr.it +39 045 8027940

Storti Silvia Francesca

silviafrancesca.storti@univr.it +39 045 802 7908

Tomazzoli Claudio

claudio.tomazzoli@univr.it

Trabetti Elisabetta

elisabetta.trabetti@univr.it 045/8027209

Villa Tiziano

tiziano.villa@univr.it +39 045 802 7034

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.

TeachingsCreditsTAFSSD
6
A
(MAT/02)
6
C
(BIO/13)
12
C
(CHIM/03 ,CHIM/06)
6
A
(FIS/01)
English B1 level
6
E
-
TeachingsCreditsTAFSSD
12
B
(INF/01)
6
C
(BIO/18)
1 module among the following
6
C
(FIS/07)

1° Anno

TeachingsCreditsTAFSSD
6
A
(MAT/02)
6
C
(BIO/13)
12
C
(CHIM/03 ,CHIM/06)
6
A
(FIS/01)
English B1 level
6
E
-

2° Anno

TeachingsCreditsTAFSSD
12
B
(INF/01)
6
C
(BIO/18)
1 module among the following
6
C
(FIS/07)
Teachings Credits TAF SSD
Between the years: 2°- 3°
Between the years: 2°- 3°
Other activities
3
F
-

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




SPlacements in companies, public or private institutions and professional associations

Teaching code

4S00021

Credits

6

Scientific Disciplinary Sector (SSD)

MAT/06 - PROBABILITY AND STATISTICS

Language of instruction

Italian

The teaching is organized as follows:

Teoria

Credits

4

Period

II semestre

Academic staff

Silvia Francesca Storti

Laboratorio

Credits

2

Period

II semestre

Academic staff

Silvia Francesca Storti

Learning outcomes

The course aims at providing the fundamental concepts of descriptive statistics and probability, with the task of modeling real problems by means of probability methods and applying to real problems statistic techniques. At the end of the course the student will have to demonstrate to understand the main statistical techniques for describing problems; to be able to interpret results of statistical analyses; to be able to develop know-how necessary to continue the study autonomously in the context of statistical analysis.

Program

------------------------
MM: Teoria
------------------------
(1) Descriptive Statistics. Describing data sets (frequency tables and graphs). Summarizing data sets (sample mean, median, and mode, sample variance and standard deviation, percentiles and box plots). Normal data sets. Sample correlation coefficient.

(2) Probability theory. Elements of probability: sample space and events, Venn diagrams and the algebra of events, axioms of probability, sample spaces having equally likely outcomes, conditional probability, Bayes’ formula, independent events. Random variables and expectation: types of random variables, expected value and properties, variance, covariance and variance of sums of random variables. Moment generating functions. Weak law of large numbers. Special random variables: special random variables and distributions arising from the normal (chi-square, t, F).

(3) Statistical inference. Distributions of sampling statistics. Parameter estimation (maximum likelihood estimators, interval estimates). Hypothesis testing and significance levels.

(4) Regression. Least squares estimators of the regression parameters. Distribution of the estimators. Statistical inferences about the regression parameters. The coefficient of determination and the sample correlation coefficient. Analysis of residuals: assessing the model. Transforming to linearity. Weighted least squares.

------------------------
MM: Laboratorio
------------------------
The course includes a series of laboratories in the computer lab with exercises in MATLAB environment. After an introduction to MATLAB and to the main functions and tools useful for statistics, some exercises will be proposed on descriptive statistics and probability; for computing the probability density function (pdf) and cumulative distribution function (cdf) of special random variables, for generating random data and estimating parameters; on hypothesis testing for distributions and linear regression. The laboratories complement lectures by consolidating learning and developing problem-solving and hands-on practical skills.

Teaching methods. Regular lectures with power point presentation and blackboard and laboratory exercises. Educational material will be available to students enrolled in the course on the Moodle platform. This material includes lecture presentations in PDF format and material related to laboratory activities. For further details and supplementary materials, please refer to the reference books.

Examination Methods

Written exam consisting of theoretical questions (test with multiple choice), problems, and laboratory questions (open questions).
To pass the exam, the students must show that:
- they have understood the basic concepts of probability theory and statistics;
- they are able to use the knowledge acquired during the course to solve the assigned problem;
- they are able to program in MATLAB environment in the statistical and probabilistic context.

Bibliografia

Reference texts
Activity Author Title Publishing house Year ISBN Notes
Teoria Sheldon M. Ross Probabilità e Statistica per l'ingegneria e le scienze, Apogeo Education, terza edizione, 2015, ISBN: 978-88-916-0994-6 (Edizione 3) Apogeo Education 2015 978-88-916-0994-6

Tipologia di Attività formativa D e F

Le attività formative in ambito D o F comprendono gli insegnamenti impartiti presso l'Università di Verona o periodi di stage/tirocinio professionale.
Nella scelta delle attività di tipo D, gli studenti dovranno tener presente che in sede di approvazione si terrà conto della coerenza delle loro scelte con il progetto formativo del loro piano di studio e dell'adeguatezza delle motivazioni eventualmente fornite.

 

Course not yet included

Career prospects


Avvisi degli insegnamenti e del corso di studio

Per la comunità studentesca

Se sei già iscritta/o a un corso di studio, puoi consultare tutti gli avvisi relativi al tuo corso di studi nella tua area riservata MyUnivr.
In questo portale potrai visualizzare informazioni, risorse e servizi utili che riguardano la tua carriera universitaria (libretto online, gestione della carriera Esse3, corsi e-learning, email istituzionale, modulistica di segreteria, procedure amministrative, ecc.).
Entra in MyUnivr con le tue credenziali GIA.

Graduation

List of theses and work experience proposals

Stage Research area
Correlated mutations Various topics

Tutorato per gli studenti

I docenti dei singoli Corsi di Studio erogano un servizio di tutorato volto a orientare e assistere gli studenti del triennio, in particolare le matricole, per renderli partecipi dell’intero processo formativo, con l’obiettivo di prevenire la dispersione e il ritardo negli studi, oltre che promuovere una proficua partecipazione attiva alla vita universitaria in tutte le sue forme.

TUTORATO PER GLI STUDENTI DELL’AREA DI SCIENZE E INGEGNERIA
Tutorato finalizzato a offrire loro un’attività di orientamento che possa essere di supporto per gli aspetti organizzativi e amministrativi della vita universitaria.
Le tutor attualemente di riferimento sono:
  • Dott.ssa Luana Uda, luana.uda@univr.it
  • Dott.ssa Roberta RIgaglia, roberta.rigaglia@univr.it

University Language Centre - CLA

Allegati


Modalità di frequenza

Come riportato al punto 25 del Regolamento Didattico per l'A.A. 2021/2022, la frequenza al corso di studio non è obbligatoria.

Tirocini e stage

Le attività di stage sono finalizzate a far acquisire allo studente una conoscenza diretta in settori di particolare attività per l’inserimento nel mondo del lavoro e per l’acquisizione di abilità specifiche di interesse professionale.
Le attività di stage sono svolte sotto la diretta responsabilità di un singolo docente presso studi professionali, enti della pubblica amministrazione, aziende accreditate dall’Ateneo veronese.
I crediti maturati in seguito ad attività di stage saranno attribuiti secondo quanto disposto nel dettaglio dal “Regolamento d’Ateneo per il riconoscimento dei crediti maturati negli stage universitari” vigente.

Tutte le informazioni in merito agli stage sono reperibili al link https://www.univr.it/it/i-nostri-servizi/stage-e-tirocini.
 

Gestione carriere


Further services

I servizi e le attività di orientamento sono pensati per fornire alle future matricole gli strumenti e le informazioni che consentano loro di compiere una scelta consapevole del corso di studi universitario.