Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Type D and Type F activities
This information is intended exclusively for students already enrolled in this course.If you are a new student interested in enrolling, you can find information about the course of study on the course page:
Laurea in Bioinformatica - Enrollment from 2025/2026Le attività formative di tipologia D sono a scelta dello studente, quelle di tipologia F sono ulteriori conoscenze utili all’inserimento nel mondo del lavoro (tirocini, competenze trasversali, project works, ecc.). In base al Regolamento Didattico del Corso, alcune attività possono essere scelte e inserite autonomamente a libretto, altre devono essere approvate da apposita commissione per verificarne la coerenza con il piano di studio. Le attività formative di tipologia D o F possono essere ricoperte dalle seguenti attività.
1. Insegnamenti impartiti presso l'Università di Verona
Comprendono gli insegnamenti sotto riportati e/o nel Catalogo degli insegnamenti (che può essere filtrato anche per lingua di erogazione tramite la Ricerca avanzata).
Modalità di inserimento a libretto: se l'insegnamento è compreso tra quelli sottoelencati, lo studente può inserirlo autonomamente durante il periodo in cui il piano di studi è aperto; in caso contrario, lo studente deve fare richiesta alla Segreteria, inviando a carriere.scienze@ateneo.univr.it il modulo nel periodo indicato.
2. Attestato o equipollenza linguistica CLA
Oltre a quelle richieste dal piano di studi, per gli immatricolati dall'A.A. 2021/2022 vengono riconosciute:
- Lingua inglese: vengono riconosciuti 3 CFU per ogni livello di competenza superiore a quello richiesto dal corso di studio (se non già riconosciuto nel ciclo di studi precedente).
- Altre lingue e italiano per stranieri: vengono riconosciuti 3 CFU per ogni livello di competenza a partire da A2 (se non già riconosciuto nel ciclo di studi precedente).
Tali cfu saranno riconosciuti, fino ad un massimo di 6 cfu complessivi, di tipologia F se il piano didattico lo consente, oppure di tipologia D. Ulteriori crediti a scelta per conoscenze linguistiche potranno essere riconosciuti solo se coerenti con il progetto formativo dello studente e se adeguatamente motivati.
Gli immatricolati fino all'A.A. 2020/2021 devono consultare le informazioni che si trovano qui.
Modalità di inserimento a libretto: richiedere l’attestato o l'equipollenza al CLA e inviarlo alla Segreteria Studenti - Carriere per l’inserimento dell’esame in carriera, tramite mail: carriere.scienze@ateneo.univr.it
3. Competenze trasversali
Scopri i percorsi formativi promossi dal TALC - Teaching and learning center dell'Ateneo, destinati agli studenti regolarmente iscritti all'anno accademico di erogazione del corso https://talc.univr.it/it/competenze-trasversali
Modalità di inserimento a libretto: non è previsto l'inserimento dell'insegnamento nel piano di studi. Solo in seguito all'ottenimento dell'Open Badge verranno automaticamente convalidati i CFU a libretto. La registrazione dei CFU in carriera non è istantanea, ma ci saranno da attendere dei tempi tecnici.
4. Periodo di stage/tirocinio
Oltre ai CFU previsti dal piano di studi (verificare attentamente quanto indicato sul Regolamento Didattico): qui informazioni su come attivare lo stage.
Insegnamenti e altre attività che si possono inserire autonomamente a libretto
years | Modules | TAF | Teacher |
---|---|---|---|
2° 3° | The fashion lab (1 ECTS) | D |
Caterina Fratea
(Coordinator)
|
years | Modules | TAF | Teacher |
---|---|---|---|
2° 3° | Introduction to Robotics for students of scientific courses. | D |
Paolo Fiorini
(Coordinator)
|
2° 3° | Matlab-Simulink programming | D |
Bogdan Mihai Maris
(Coordinator)
|
years | Modules | TAF | Teacher |
---|---|---|---|
2° 3° | The fashion lab (1 ECTS) | D |
Caterina Fratea
(Coordinator)
|
years | Modules | TAF | Teacher |
---|---|---|---|
2° 3° | Introduction to Robotics for students of scientific courses. | D |
Paolo Fiorini
(Coordinator)
|
2° 3° | Introduction to 3D printing | D |
Franco Fummi
(Coordinator)
|
2° 3° | LaTeX Language | D |
Enrico Gregorio
(Coordinator)
|
2° 3° | HW components design on FPGA | D |
Franco Fummi
(Coordinator)
|
2° 3° | Rapid prototyping on Arduino | D |
Franco Fummi
(Coordinator)
|
2° 3° | Protection of intangible assets (SW and invention)between industrial law and copyright | D |
Roberto Giacobazzi
(Coordinator)
|
years | Modules | TAF | Teacher | |
---|---|---|---|---|
1° | Subject requirements: mathematics | D |
Franco Zivcovich
|
|
2° 3° | Python programming language | D |
Giulio Mazzi
(Coordinator)
|
Probability and Statistics (2021/2022)
Teaching code
4S00021
Credits
6
Coordinator
Not yet assigned
Language
Italian
Scientific Disciplinary Sector (SSD)
MAT/06 - PROBABILITY AND STATISTICS
The teaching is organized as follows:
Teoria
Credits
4
Period
Secondo semestre
Academic staff
Silvia Francesca Storti
Laboratorio
Credits
2
Period
Secondo semestre
Academic staff
Silvia Francesca Storti
Learning outcomes
The course aims at providing the fundamental concepts of descriptive statistics and probability, with the task of modeling real problems by means of probability methods and applying to real problems statistic techniques. At the end of the course the student will have to demonstrate to understand the main statistical techniques for describing problems; to be able to interpret results of statistical analyses; to be able to develop know-how necessary to continue the study autonomously in the context of statistical analysis.
Program
------------------------
MM: Teoria
------------------------
(1) Descriptive Statistics. Describing data sets (frequency tables and graphs). Summarizing data sets (sample mean, median, and mode, sample variance and standard deviation, percentiles and box plots). Normal data sets. Sample correlation coefficient. (2) Probability theory. Elements of probability: sample space and events, Venn diagrams and the algebra of events, axioms of probability, sample spaces having equally likely outcomes, conditional probability, Bayes’ formula, independent events. Random variables and expectation: types of random variables, expected value and properties, variance, covariance and variance of sums of random variables. Moment generating functions. Weak law of large numbers. Special random variables: special random variables and distributions arising from the normal (chi-square, t, F). (3) Statistical inference. Distributions of sampling statistics. Parameter estimation (maximum likelihood estimators, interval estimates). Hypothesis testing and significance levels. (4) Regression. Least squares estimators of the regression parameters. Distribution of the estimators. Statistical inferences about the regression parameters. The coefficient of determination and the sample correlation coefficient. Analysis of residuals: assessing the model. Transforming to linearity. Weighted least squares.
------------------------
MM: Laboratorio
------------------------
The course includes a series of laboratories in the computer lab with exercises in MATLAB environment. After an introduction to MATLAB and to the main functions and tools useful for statistics, some exercises will be proposed on descriptive statistics and probability; for computing the probability density function (pdf) and cumulative distribution function (cdf) of special random variables, for generating random data and estimating parameters; on hypothesis testing for distributions and linear regression. The laboratories complement lectures by consolidating learning and developing problem-solving and hands-on practical skills. Teaching methods. Regular lectures with power point presentation and blackboard and laboratory exercises. Educational material will be available to students enrolled in the course on the Moodle platform. This material includes lecture presentations in PDF format and material related to laboratory activities. For further details and supplementary materials, please refer to the reference books.
Bibliography
Examination Methods
Written exam consisting of theoretical questions (test with multiple choice), problems, and laboratory questions (open questions). To pass the exam, the students must show that: - they have understood the basic concepts of probability theory and statistics; - they are able to use the knowledge acquired during the course to solve the assigned problem; - they are able to program in MATLAB environment in the statistical and probabilistic context.