Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Type D and Type F activities
This information is intended exclusively for students already enrolled in this course.If you are a new student interested in enrolling, you can find information about the course of study on the course page:
Laurea in Bioinformatica - Enrollment from 2025/2026Type D and Type F activities
Type D educational activities are at the student's choice, Type F activities are additional knowledge useful for job placement (internships, transversal skills, project works, etc.). According to the Didactic Regulations of the Course, some activities can be chosen and entered independently in the booklet, others must be approved by a special committee to verify their consistency with the study plan. Type D or F training activities can be covered by the following activities.
1. Teachings delivered at the University of Verona.
Include the teachings listed below and/or in the Catalog of Teachingshttps://www.univr.it/it/catalogo-insegnamenti - Opens in a new window (which can also be filtered by language of delivery via Advanced Search).
Booklet entry mode: if the teaching is included among those listed below, the student can enter it independently during the period- Opens in a new window in which the syllabus is open; otherwise, the student must make a request to the Secretariat, sending to carriere.scienze@ateneo.univr.it- Opens in a new window the form- Opens in a new window in the period indicated- Opens in a new window.
2. CLA language certificate or equivalency.
In addition to those required by the curriculum, the following are recognized for those matriculated from A.Y. 2021/2022:
- English language: 3 CFUs are recognized for each level of proficiency above that required by the course of study (if not already recognized in the previous course of study).
- Other languages and Italian for foreigners: 3 cfu are recognized for each proficiency level starting from A2 (if not already recognized in the previous study cycle).
These cfu will be recognized, up to a maximum of 6 cfu in total, of type F if the teaching plan allows it, or of type D. Additional elective credits for language knowledge may be recognized only if consistent with the student's educational project and if adequately motivated.
Those matriculated up to A.Y. 2020/2021 should consult the information found here- services - cla - language exercises - science and engineering https://www.scienzeingegneria.univr.it/?ent=iniziativa&id=4688 - Opens in a new window.
Booklet entry mode: apply for the certificate- Opens in a new window orequivalency- services - recognition of external language certifications - cla Opens in a new window to the CLA and send it to the Student Secretariat - Careers for the inclusion of the exam in the career, by email: carriere.scienze@ateneo.univr.it- Opens in a new window
3. Soft skills
Discover the training paths promoted by the University's TALC - Teaching and learning centerhttps://talc.univr.it/ - Opens in a new window, intended for students regularly enrolled in the academic year of course delivery https://talc.univr.it/it/competenze-trasversali- Opens in a new window
Booklet entry mode: The teaching is not intended to be included in the syllabus. Only upon obtaining theOpen Badgehttps://talc.univr.it/it/servizi/open-badge - Opens in a new window will the booklet CFUs be automatically validated. The registration of CFUs in career is not instantaneous, but there will be some technical time to wait.
4. Contamination lab
The Contamination Lab Verona (CLab Verona) is an experiential pathway with modules dedicated to innovation and business culture that offers the opportunity to work in teams with students from all courses of study to solve challenges launched by companies and institutions. The pathway allows students to receive 6 CFUs in the D or F area. Discover the challenges: https://www.univr.it/clabverona- Opens in a new window
PLEASE NOTE: To be eligible to take any teaching activity, including electives, you must be enrolled in the year of the course in which it is offered. Therefore, it is recommended that undergraduates of the December and April sessions DO NOT take extracurricular activities of the new academic year, in which they are not enrolled, since these degree sessions are valid with reference to the previous academic year. Therefore, for activities carried out in an academic year in which they are not enrolled, no recognition of CFUs can be given.
5. Internship/internship period
In addition to the CFUs stipulated in the curriculum (check carefully what is indicated on the Educational Regulations) here- services - internships and apprenticeships - science and engineering It opens in a new window you can find information on how to activate the internship.
Check in the regulations which activities can be Type D and which can be Type F.
Please also note that for internships activated from October 1, 2024, it will be possible to recognize excess hours in terms of Type D credits, limited only to internship experiences carried out at host institutions outside the University.
years | Modules | TAF | Teacher |
---|---|---|---|
2° 3° | Attention Laboratory | D |
Pietro Sala
(Coordinator)
|
2° 3° | Elements of Cosmology and General Relativity | D |
Claudia Daffara
(Coordinator)
|
2° 3° | Introduction to quantum mechanics for quantum computing | D |
Claudia Daffara
(Coordinator)
|
2° 3° | Introduction to smart contract programming for ethereum | D |
Sara Migliorini
(Coordinator)
|
2° 3° | Python programming language [English edition] | D |
Carlo Combi
(Coordinator)
|
2° 3° | BEYOND ARDUINO: FROM PROTOTYPE TO PRODUCT WITH STM MICROCONTROLLER | D |
Franco Fummi
(Coordinator)
|
2° 3° | APP REACT PLANNING | D |
Graziano Pravadelli
(Coordinator)
|
2° 3° | HW components design on FPGA | D |
Franco Fummi
(Coordinator)
|
years | Modules | TAF | Teacher |
---|---|---|---|
2° 3° | Attention Laboratory | D |
Pietro Sala
(Coordinator)
|
2° 3° | LaTeX Language | D |
Enrico Gregorio
(Coordinator)
|
2° 3° | Python programming language [Edizione in italiano] | D |
Carlo Combi
(Coordinator)
|
2° 3° | Rapid prototyping on Arduino | D |
Franco Fummi
(Coordinator)
|
2° 3° | Programming Challanges | D |
Romeo Rizzi
(Coordinator)
|
2° 3° | Tools for development of applications of virtual reality and mixed | D |
Andrea Giachetti
(Coordinator)
|
2° 3° | Development and life cycle of software of artificial intelligence software | D |
Marco Cristani
(Coordinator)
|
2° 3° | Protection of intangible assets (SW and invention)between industrial law and copyright | D |
Mila Dalla Preda
(Coordinator)
|
years | Modules | TAF | Teacher |
---|---|---|---|
1° | Subject requirements: mathematics | D |
Franco Zivcovich
(Coordinator)
|
Molecular Biology (2024/2025)
Teaching code
4S004476
Teacher
Coordinator
Credits
6
Language
Italian
Scientific Disciplinary Sector (SSD)
BIO/11 - MOLECULAR BIOLOGY
Period
Semester 2 dal Mar 3, 2025 al Jun 13, 2025.
Courses Single
Authorized
Learning objectives
The aim of this course is to provide a detailed description at the molecular level of the main issues regarding the mechanisms involved in transmission, variation and expression of the information con-tained in the genome of prokaryotes and eukaryotes. The main topics of the course will focus on a detailed description of the processes of gene transcription and translation and those related to DNA replication and mutagenesis. The students will acquire knowledge of the fundamental structures of biological systems in a molecu-lar and cellular perspective and of the mechanisms inherent to the transmission, manipulation and expression of the information contained in the genome of prokaryotes and eukaryotes. The students will be able to understand the genetic bases of life and to apply the acquired knowledge to use and possibly develop bioinformatics tools for the investigation of structure-function relationships of biological macromolecules and the regulation of their functions. They will be able to read and un-derstand advanced biology textsbooks and undertake a master-level course in both biotechnology and bioinformatics.
Prerequisites and basic notions
Having attended and possibly having taken the exam of the courses of Biology, Chemistry and Biochemistry.
Program
Course program:
The genetic information and informational molecules
General introduction and history. The structure of DNA and RNA. From genes to proteins, messenger RNA, transfer RNA and ribosomal RNA. The genetic code.
DNA and gene structure
The definition of gene. Coding and regulatory regions. Genes interrupted; introns.
Organization and evolution of genomes
DNA content and number of genes. Repetitive DNA. Gene families and gene duplication. Mutation, rearrangements of DNA and evolution of genomes.
The genomes of organelles.
Mobile genetic elements
Transposons,retrotransposons and retrovirus.
Chromatin and chromosomes
The nucleosomes; histones and their modifications. Higher levels of organization of chromatin. Eterochromatin and euchromatin. Eukaryotic chromosomes,telomers and centromeres.
DNA replication
The DNA polymerase. Proofreading activities of DNA polymerase.
The mechanism of replication in bacteria and eukaryotes.
Mutations and DNA repair
Spontaneous mutations and mutations caused by physical and chemical mutagens. Pre and post replication rapair systems. Recombination in immune system cells.
RNAs and transcription
The different types of RNA: synthesis and maturation. Bacterial RNA polymerase. The sigma factors. The eukaryotic RNA polymerase. Eukaryotic mRNA : capping, polyadenilation, transport in the cytoplasm. The process of transcription in bacteria and eukaryotes.
Regulation of gene expression
Bacterial promoters. Operons. Eukaryotic promoters. The regulation elements: enhancers, silencers, insulators, LCR. Gene expression and chromatin modifications. Epigenetic effects.
Introns and RNA Splicing
Spliceosomal introns. The spliceosome and mechanism of splicing. Alternative splicing and trans-Splicing. Other types of introns: group I and II introns. RNA editing. Ribozymes and riboswitch.
Translations
The ribosomes. Structure and function of tRNA. Synthesis of aminoacil-tRNA. Beginning of translation in bacteria and eukaryotes. Synthesis of polypeptides and termination of translation. Regulation of the translation. Location of proteins.
The teaching material used in class lessons is available on the e-learning platform of the course.
Suggested textbooks:
Lewin, The Gene - Compact Edition, Zanichelli
Cox, Molecular Biology, Zanichelli
Watson, Molecular Biology of the Genus, Zancihelli
Bibliography
Didactic methods
Lessons in classroom.
Learning assessment procedures
Multiple choice written test (20 questions, 1:30 hours).
Evaluation criteria
Knowledge of the topics covered in the course is assessed through the ability to identify the correct answer.
Criteria for the composition of the final grade
The final score is calculated on the basis of the number of correct answers (1.5 points for correct answer).
Exam language
Italiano