Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Type D and Type F activities
This information is intended exclusively for students already enrolled in this course.If you are a new student interested in enrolling, you can find information about the course of study on the course page:
Laurea in Bioinformatica - Enrollment from 2025/2026Le attività formative di tipologia D sono a scelta dello studente, quelle di tipologia F sono ulteriori conoscenze utili all’inserimento nel mondo del lavoro (tirocini, competenze trasversali, project works, ecc.). In base al Regolamento Didattico del Corso, alcune attività possono essere scelte e inserite autonomamente a libretto, altre devono essere approvate da apposita commissione per verificarne la coerenza con il piano di studio. Le attività formative di tipologia D o F possono essere ricoperte dalle seguenti attività:
1. Insegnamenti impartiti presso l'Università di Verona
Comprendono gli insegnamenti sotto riportati e/o nel Catalogo degli insegnamenti (che può essere filtrato anche per lingua di erogazione tramite la Ricerca avanzata).
Modalità di inserimento a libretto: se l'insegnamento è compreso tra quelli sottoelencati, lo studente può inserirlo autonomamente durante il periodo in cui il piano di studi è aperto; in caso contrario, lo studente deve fare richiesta alla Segreteria, inviando a carriere.scienze@ateneo.univr.it il modulo nel periodo indicato.
2. Attestato o equipollenza linguistica CLA
Oltre a quelle richieste dal piano di studi, per gli immatricolati dall'A.A. 2021/2022 vengono riconosciute:
- Lingua inglese: vengono riconosciuti 3 CFU per ogni livello di competenza superiore a quello richiesto dal corso di studio (se non già riconosciuto nel ciclo di studi precedente).
- Altre lingue e italiano per stranieri: vengono riconosciuti 3 CFU per ogni livello di competenza a partire da A2 (se non già riconosciuto nel ciclo di studi precedente).
Tali cfu saranno riconosciuti, fino ad un massimo di 6 cfu complessivi, di tipologia F se il piano didattico lo consente, oppure di tipologia D. Ulteriori crediti a scelta per conoscenze linguistiche potranno essere riconosciuti solo se coerenti con il progetto formativo dello studente e se adeguatamente motivati.
Gli immatricolati fino all'A.A. 2020/2021 devono consultare le informazioni che si trovano qui.
Modalità di inserimento a libretto: richiedere l’attestato o l'equipollenza al CLA e inviarlo alla Segreteria Studenti - Carriere per l’inserimento dell’esame in carriera, tramite mail: carriere.scienze@ateneo.univr.it
3. Competenze trasversali
Scopri i percorsi formativi promossi dal TALC - Teaching and learning center dell'Ateneo, destinati agli studenti regolarmente iscritti all'anno accademico di erogazione del corso https://talc.univr.it/it/competenze-trasversali
Modalità di inserimento a libretto: non è previsto l'inserimento dell'insegnamento nel piano di studi. Solo in seguito all'ottenimento dell'Open Badge verranno automaticamente convalidati i CFU a libretto. La registrazione dei CFU in carriera non è istantanea, ma ci saranno da attendere dei tempi tecnici.
4. CONTAMINATION LAB
Il Contamination Lab Verona (CLab Verona) è un percorso esperienziale con moduli dedicati all'innovazione e alla cultura d'impresa che offre la possibilità di lavorare in team con studenti e studentesse di tutti i corsi di studio per risolvere sfide lanciate da aziende ed enti. Il percorso permette di ricevere 6 CFU in ambito D o F. Scopri le sfide: https://www.univr.it/clabverona
ATTENZIONE: Per essere ammessi a sostenere una qualsiasi attività didattica, incluse quelle a scelta, è necessario essere iscritti all'anno di corso in cui essa viene offerta. Si raccomanda, pertanto, ai laureandi delle sessioni di dicembre e aprile di NON svolgere attività extracurriculari del nuovo anno accademico, cui loro non risultano iscritti, essendo tali sessioni di laurea con validità riferita all'anno accademico precedente. Quindi, per attività svolte in un anno accademico cui non si è iscritti, non si potrà dar luogo a riconoscimento di CFU.
5. Periodo di stage/tirocinio
Oltre ai CFU previsti dal piano di studi (verificare attentamente quanto indicato sul Regolamento Didattico): qui informazioni su come attivare lo stage.
Verificare nel regolamento quali attività possono essere di tipologia D e quali di tipologia F.
Insegnamenti e altre attività che si possono inserire autonomamente a libretto
years | Modules | TAF | Teacher |
---|---|---|---|
2° 3° | Introduction to Docker | D |
Franco Fummi
(Coordinator)
|
2° 3° | Introduction to quantum mechanics for quantum computing | D |
Claudia Daffara
(Coordinator)
|
2° 3° | Introduction to smart contract programming for ethereum | D |
Sara Migliorini
(Coordinator)
|
2° 3° | Introduction to Robotics for students of scientific courses. | D |
Andrea Calanca
(Coordinator)
|
2° 3° | Web and mobile app design using react and react native | D |
Graziano Pravadelli
(Coordinator)
|
2° 3° | Rapid prototyping on Arduino | D |
Franco Fummi
(Coordinator)
|
2° 3° | Firmware development with bluetooth low energy (BLE) protocol and freertos operating system | D |
Franco Fummi
(Coordinator)
|
years | Modules | TAF | Teacher |
---|---|---|---|
2° 3° | Artificial intelligence | D |
Alessandro Farinelli
(Coordinator)
|
2° 3° | Introduction to Robotics for students of scientific courses. | D |
Andrea Calanca
(Coordinator)
|
2° 3° | LaTeX Language | D |
Enrico Gregorio
(Coordinator)
|
2° 3° | Python programming language | D |
Carlo Combi
(Coordinator)
|
2° 3° | HW components design on FPGA | D |
Franco Fummi
(Coordinator)
|
2° 3° | Programming Challanges | D |
Romeo Rizzi
(Coordinator)
|
2° 3° | Protection of intangible assets (SW and invention)between industrial law and copyright | D |
Mila Dalla Preda
(Coordinator)
|
years | Modules | TAF | Teacher |
---|---|---|---|
1° | Subject requirements: mathematics | D |
Franco Zivcovich
(Coordinator)
|
Signal and image processing II (2023/2024)
Teaching code
4S008226
Credits
6
Language
Italian
Scientific Disciplinary Sector (SSD)
INF/01 - INFORMATICS
Courses Single
Authorized
The teaching is organized as follows:
Teoria
Laboratorio
Learning objectives
The aim of the course is to provide students with the fundamental concepts and tools in order to apply advanced signal and image processing techniques in clinical studies based on imaging. The students will learn how to employ the most suitable algorithms and software tools to be able to solve the most typical problems that may arise in imaging studies.
Prerequisites and basic notions
Attendance of the "Signals and images 1" course is recommended but not strictly necessary for a correct and proper understanding of the course.
Program
THEORY
- Recalls of fundamental concepts of biomedical signals / images
- Methods for improving the quality and restoration of images (e.g. HDR imaging, Wiener)
- Extraction of features (e.g. Canny, Hough)
- Extraction of regions (e.g. Watershed, region growing, snakes)
- Morphological operators
- Image registration / alignment
- Image compression algorithms
LABORATORY
During the laboratory sessions some of the methodologies covered during the theory lectures will be studied more in depth by solving signal / image processing problems mainly using PYTHON.
Didactic methods
Classical lectures for the theory part, while in the hands-on sessions the students will have the opportunity to experiment and deepen the topics seen in theory through the use of PYTHON.
Learning assessment procedures
The exam consists of a written test with open-ended questions and exercises on the topics covered in the course.
Evaluation criteria
Typically the exam includes 8 questions (one on each of the macro-topics covered in the course), and each question can have a grade between 0 and 4. The final grade is expressed out of thirty (32 = 30L).
Criteria for the composition of the final grade
The exam does not include a laboratory test.
Exam language
Italiano