Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
I sem. Oct 1, 2014 Jan 30, 2015
II sem. Mar 2, 2015 Jun 12, 2015
Exam sessions
Session From To
Sessione straordinaria appelli d'esame Feb 2, 2015 Feb 27, 2015
Sessione estiva appelli d'esame Jun 15, 2015 Jul 31, 2015
Sessione autunnale appelli d'esame Sep 1, 2015 Sep 30, 2015
Degree sessions
Session From To
Sessione autunnale appello di laurea 2014 Nov 26, 2014 Nov 26, 2014
Sessione invernale appello di laurea 2015 Mar 18, 2015 Mar 18, 2015
Sessione estiva appello di laurea 2015 Jul 14, 2015 Jul 14, 2015
Sessione autunnale appello di laurea 2015 Nov 25, 2015 Nov 25, 2015
Sessione invernale appello di laurea 2016 Mar 16, 2016 Mar 16, 2016
Holidays
Period From To
Vacanze di Natale Dec 22, 2014 Jan 6, 2015
Vacanze di Pasqua Apr 2, 2015 Apr 7, 2015
Ricorrenza del Santo Patrono May 21, 2015 May 21, 2015
Vacanze estive Aug 10, 2015 Aug 16, 2015

Exam calendar

Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrolment FAQs

Academic staff

A B C D F G L M N O P S T V

Angeleri Lidia

lidia.angeleri@univr.it 045 802 7911

Astegno Alessandra

alessandra.astegno@univr.it 045802 7955

Ballottari Matteo

matteo.ballottari@univr.it 045 802 7098

Betterle Nico

nico.betterle@univr.it +39 045 8027807

Bicego Manuele

manuele.bicego@univr.it +39 045 802 7072

Canevari Giacomo

giacomo.canevari@univr.it +39 045 8027979

Capaldi Stefano

stefano.capaldi@univr.it +39 045 802 7907

Carra Damiano

damiano.carra@univr.it +39 045 802 7059

Combi Carlo

carlo.combi@univr.it 045 802 7985

Cozza Vittoria

vittoria.cozza@univr.it

Cristani Matteo

matteo.cristani@univr.it 045 802 7983

Daducci Alessandro

alessandro.daducci@univr.it +39 045 8027025

Dall'Alba Diego

diego.dallalba@univr.it +39 045 802 7074

Della Libera Chiara

chiara.dellalibera@univr.it +39 0458027219

Delledonne Massimo

massimo.delledonne@univr.it 045 802 7962; Lab: 045 802 7058

Dell'Orco Daniele

daniele.dellorco@univr.it +39 045 802 7637

Dominici Paola

paola.dominici@univr.it 045 802 7966; Lab: 045 802 7956-7086

D'Onofrio Mariapina

mariapina.donofrio@univr.it 045 802 7801

Franco Giuditta

giuditta.franco@univr.it +39 045 802 7045

Giachetti Andrea

andrea.giachetti@univr.it +39 045 8027998

Giorgetti Alejandro

alejandro.giorgetti@univr.it 045 802 7982

Gregorio Enrico

Enrico.Gregorio@univr.it 045 802 7937

Liptak Zsuzsanna

zsuzsanna.liptak@univr.it +39 045 802 7032

Marino Valerio

valerio.marino@univr.it +39 045 802 7227

Masini Andrea

andrea.masini@univr.it 045 802 7922

Menegaz Gloria

gloria.menegaz@univr.it +39 045 802 7024

Migliorini Sara

sara.migliorini@univr.it +39 045 802 7908

Monti Francesca

francesca.monti@univr.it 045 802 7910

Nardon Chiara

chiara.nardon@univr.it

Oliboni Barbara

barbara.oliboni@univr.it +39 045 802 7077

Posenato Roberto

roberto.posenato@univr.it +39 045 802 7967

Sala Pietro

pietro.sala@univr.it 0458027850

Spoto Nicola Fausto

fausto.spoto@univr.it +39 045 8027940

Storti Silvia Francesca

silviafrancesca.storti@univr.it +39 045 802 7908

Trabetti Elisabetta

elisabetta.trabetti@univr.it 045/8027209

Villa Tiziano

tiziano.villa@univr.it +39 045 802 7034

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




SPlacements in companies, public or private institutions and professional associations

Teaching code

4S00997

Credits

6

Language

Italian

Scientific Disciplinary Sector (SSD)

BIO/13 - EXPERIMENTAL BIOLOGY

Period

II sem. dal Mar 2, 2015 al Jun 12, 2015.

Learning outcomes

The course purposes are:
• To give basic knowledge about living organism characteristic: procariots, eucariots, viruses, through the acquisition of the fundamental concepts of biology and of the structural, functional and molecular principles of cellular processes.
• To educate to the critical evaluation of experimental data, describing and discussing past and contemporary important experiments.
• To let know the current methodologies used in the biological molecules study


CONTENTS:
• Organization levels of living organisms
• Chemistry of living organisms and biological molecules
• Energetic bases of life: energetic metabolism, photosynthesis, cellular respiration. Enzymes.
• Structure, function, replication of the eukaryotic and prokaryotic cell. Role of the cell compartmentation.
• Methods and Instruments of cell investigations
• Plasmatic membrane: structure, properties and function
• Cell communication
• Cell cycle and its regulation, mitosis, meiosis
• Nucleic acids gene value and experimental demonstration
• DNA: structure, function, replication
• DNA mutation and repair
• Informational pathway: transcription, translation. Regulation of gene expression in eukaryotes and prokaryotes
• Hereditary character transmission and Mendel’s laws
• Recombinant DNA technology and genomics.
• The human genome
• Somatic mutations and cancer
• Evolutionary theory. Speciation, selection, evolution, adaptation
• General biology of Viruses and Prokaryotes.
• Developmental and aging biology
• Animal behaviour

Program

OVERVIEW ON BIOLOGY. Characteristics of the living beings: prokaryotic and eukaryotic cell, growth and development, regulation of metabolism, ability to respond to stimuli, reproduction, evolution and adaptation. Levels of biological organization. Transmission of information between organisms and across generations. Evolution and hierarchical classification of living organisms. Energy flow through ecosystems.

CHEMICAL ELEMENTS OF LIFE. Chemical elements in living organisms. Covalent, ionic, polar, nonpolar, hydrogen bonds; intermolecular interactions, the van der Waals forces. Redox reactions, pH, salts, acids, bases, buffers. Functional groups. Geometrical and structural isomers. Organic molecules and macromolecules. Carbohydrates, proteins, lipids, nucleic acids. Enantiomers. Importance of water in biology.

PRINCIPAL INSTRUMENTS AND METHODS OF CELL INVESTIGATIONS: light microscopy, electron microscopy, cell fractionation

PROKARYOTIC AND EUKARYOTIC CELL. Cell theory. Organization of the cell. Internal membranes and compartmentalization. Organelles, characteristics and functions: Nucleus, ribosomes, RER, REL, Golgi, lysosomes, peroxisomes, cytoskeleton (microtubules, microfilaments, intermediate filaments, centrioles), cilia, flagella, cell wall, extracellular matrix. Animal and plant cells. Mitochondria and plastids (chloroplasts, amyloplasts, chromoplasts) and endosymbiont theory.

BIOLOGICAL MEMBRANES. Structure and proposed models. Kinds of membrane lipids and proteins. Function of membrane constituents. Passage of materials across cell membranes: passive transport (facilitated diffusion and simple), osmosis, directly and indirectly active transport, co-transport. Exocytosis and endocytosis. Anchoring, tight and gap cell junctions in animal and plant cells.

CELL COMMUNICATION. Types of cellular communication: endocrine, paracrine, autocrine and iuxtacrine. Sending and receiving the signal. Surface and intracellular receptors. Receptors coupled to ion channels, G protein, enzymes. Signal transduction and second messengers. The response to signals. Negative signal transduction.

ENERGY FLOW THROUGH LIVING ORGANISMS.
Energy and metabolism: energy and biological work; exo-and endo-ergonic reactions, metabolism, anabolism and catabolism, reduction-oxidation reactions, energy coupling; ATP; energy transfer systems: transport of phosphate groups, electrons and other active groups.
Enzymes. Activation energy, active site, features, functioning, control systems, activation and inhibition of enzyme activity, metabolic pathways, cofactors, coenzymes, prosthetic groups.

ATP SYNTHESIS AND METABOLIC PATHWAYS THAT RELEASE ENERGY. Redox reactions. Glycolysis, aerobic respiraton, Krebs cycle, electron transport chain: oxidative phosphorylation and chemiosmosis. Anaerobic respiraton. Fermentation.
Photosynthesis. Chlorophyll and other pigments. Antenna pigments. Light-dependent reactions. Photosystems I and II. Cyclical and not-cyclical transport of electrons. Chemiosmosis and photophosphorylation. Light-independent reactions and C fixation. Calvin Benson cycle. C4 cycle. Crassulacean acid metabolism (CAM). Photorespiration.
Heterotrophic, autotrophic, phototrophic, chemotrophic organisms.

ORGANIZATION OF DNA IN CHROMOSOMES, MITOSIS AND MEIOSIS. DNA and proteins, nucleosomes, heterochromatin, euchromatin, chromosome condensation. The cell cycle and its regulation. Mitosis, meiosis and sexual reproduction.

PRINCIPLES OF MENDEL’S HEREDITY. Definition of phenotype, genotype, locus, gene, dominant and recessive allele, homozygosity and heterozygosity. Segregation and independent assortment. Independence and association. Crossing-over and recombination. Genetic determination of sex. Gene interactions. Incomplete dominance, condominance, multiple alleles, epistasis and polygeny.

DNA AND GENETIC MATERIAL. Transforming principle in bacteria. Bacterial Transformation and Griffith experiments. Hershey and Chase experiment. DNA structure. Replication. Meselson and Stahl experiment and semiconservative replication. DNA synthesis and error repair.

GENE EXPRESSION IN DIFFERENT ORGANISMS. Gene/protein relationship. Gene/enzyme hypothesis, Beadle and Tatum experiment. Genetic information pathway. Transcription, mRNA synthesis and maturation. Genetic code, tRNA and translation. Post-transcriptional and post-translational modifications. Coding and noncoding sequences. Prokaryotic and eukaryotic genes. Several types of RNA and gene expression control. DNA mutations and mutagenesis.

GENERAL ASPECTS OF GENE REGULATION IN PROKARYOTES AND EUKARYOTES. Operons, promoters, inducible and repressible genes, repressors and activators. Positive and negative control of gene transcription. Post-transcriptional and post-translational controls. Epigenetic inheritance. Imprinting. Gene amplification. Promoters, TATA box and UPE. Transcription factors, enhancers. RNA maturation and alternative splicing. RNA stability. Maturation of proteins.

RECOMBINANT DNA TECHNOLOGY AND GENOMICS. DNA cloning, restriction enzymes, vectors and genomic libraries. Genetic probes. DNA amplification in vitro by polymerase chain reaction (PCR). DNA analysis by means of electrophoresis: Southern, Northern and Western blot. Polymorphisms and DNA sequencing. Definition of structural, functional and comparative genomics. DNA microarray. Human Genome Project, Bioinformatics, Pharmacogenomics and Proteomics.

HUMAN GENOME. Karyotype analysis and pedigrees. Mouse models for studying genetic diseases in humans. Chromosomal abnormalities and genetic mutations. Autosomal recessive, autosomal dominant, X-linked diseases.

DEVELOPMENT BIOLOGY. Cell differentiation and morphogenesis. Differential gene expression. Somatic and germ cells. Stem cells. Cloning. Transgenic organisms. Genetic control of development. Model organisms: Drosophila, Caenorbiditis elegans, Mouse, Arabidospsis. Maternal effect genes, the segmentation genes, homeotic genes. Mosaic development, apoptosis. Transgenic mice. Aging process. Plant development. Cancer and cell growth. Growth factors.

DARWIN AND EVOLUTION. Natural selection. Micro and macro-evolution. Synthetic theory of evolution (neo-Darwinism). Effect of chance. Evidence for evolution. Sedimentary rocks. Fossils. Comparative anatomy. Biogeography, geology (plate tectonics and continents drift) and correlations with evolution. Developmental biology and evolutionary patterns. Molecular comparison among organisms. Universality of the genetic code, evolutionary changes in proteins and DNA. Phylogenetic trees, speciation and divergence between species. Evolutionary hypothesis.

GENERAL BIOLOGY OF VIRUES AND PROKARIOTES. DNA viruses, RNA viruses (retroviruses) and phages. Origin of the virus. Lytic cycle and virulence. Lysogenic cycle and temperate viruses. Lysogenic conversion. Viruses of vertebrates and viral infections. Elements of plant viruses. Viroids and prions.
Prokaryotes. Archea and Bacteria domains. Gram+ and Gram-. Cilia, flagella, chemotaxis. Binary fission and reproduction of bacteria. Transfer of genetic information. Processing, translation, conjugation. Evolution of bacterial populations. Sporulation. Biofilm. Metabolism: dependence on oxygen and other energy sources. Colonization of extreme environments. Prokaryotes and environment: parasites, saprophytes, symbionts. Prokaryotes and diseases. Antibiotics and resistance. Prokaryotes and commercial processes

ANIMAL BEHAVIOUR. The influence of sensory stimuli, learning, genetic heritage. The selection for the survival and reproductive success, the concept of total fitness.

Examination Methods

Written test (multiple choice quiz and open questions) based on the educational content of the course.
Students who have received at least 25/30 in the written test and aiming for a better rate can support an oral exam.

Type D and Type F activities

Modules not yet included

Career prospects


Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details.

Graduation

List of theses and work experience proposals

Stage Research area
Correlated mutations Various topics

Attendance

As stated in point 25 of the Teaching Regulations for the A.Y. 2021/2022, attendance at the course of study is not mandatory.
Please refer to the Crisis Unit's latest updates for the mode of teaching.

Career management


Area riservata studenti