Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

This information is intended exclusively for students already enrolled in this course.
If you are a new student interested in enrolling, you can find information about the course of study on the course page:

Laurea in Informatica - Enrollment from 2025/2026

Type D learning activities are the student's choice, type F activities are additional knowledge useful for job placement (internships, transversal skills, project works, etc.). According to the Teaching Regulations of the Course, some activities can be chosen and entered independently in the booklet, others must be approved by a special committee to verify their consistency with the study plan. Type D or F learning activities can be covered by the following activities.

1. Modules taught at the University of Verona

Include the modules listed below and/or in the Course Catalogue (which can also be filtered by language of delivery via Advanced Search).

Booklet entry mode: if the teaching is included among those listed below, the student can enter it independently during the period in which the curriculum is open; otherwise, the student must make a request to the Secretariat, sending the form to carriere.scienze@ateneo.univr.it during the period indicated.

2. CLA certificate or language equivalency

In addition to those required by the curriculum/study plan, the following are recognized for those matriculated from A.Y. 2021/2022:

  • English language: 3 CFUs are recognized for each level of proficiency above that required by the course of study (if not already recognized in the previous course of study).
  • Other languages and Italian for foreigners: 3 CFUs are recognized for each proficiency level starting from A2 (if not already recognized in the previous study cycle).

These CFUs will be recognized, up to a maximum of 6 CFUs in total, of type F if the study plan allows it or of type D. Additional elective credits for language knowledge may be recognized only if consistent with the student's educational project and if adequately justified.

Those enrolled until A.Y. 2020/2021 should consult the information found here.

Method of inclusion in the bookletrequest the certificate or equivalency from CLA and send it to the Student Secretariat - Careers for the inclusion of the exam in the career, by email: carriere.scienze@ateneo.univr.it

3. Transversal skills

Discover the training paths promoted by the University's TALC - Teaching and learning center intended for students regularly enrolled in the academic year of course delivery https://talc.univr.it/it/competenze-trasversali

Mode of inclusion in the booklet: the teaching is not expected to be included in the curriculum. Only upon obtaining the Open Badge will the booklet CFUs be automatically validated. The registration of CFUs in career is not instantaneous, but there will be some technical time to wait.  

4. Contamination lab

The Contamination Lab Verona (CLab Verona) is an experiential course with modules on innovation and enterprise culture that offers the opportunity to work in teams with students from all areas to solve challenges set by companies and organisations.  

Upon completion of a CLab, students will be entitled to receive 6 CFU (D- or F-type credits).  

Find out more:  https://www.univr.it/clabverona 

PLEASE NOTE: In order to be admitted to any teaching activities, including those of your choice, you must be enrolled in the academic year in which the activities in question are offered. Students who are about to graduate in the December and April sessions are therefore advised NOT to undertake extracurricular activities in the new academic year in which they are not enrolled, as these graduation sessions are valid for students enrolled in the previous academic year. Therefore, students who undertake an activity in an academic year in which they are not enrolled will not be granted CFU credits.  

5. Internship/internship period

In addition to the CFUs stipulated in the curriculum/study plan (check carefully what is indicated on the Teaching Regulationshere you can find information on how to activate the internship. 

Check the regulations to see which activities can be Type D and which can be Type F.

Please also note that for traineeships activated after 1 October 2024, it will be possible to recognise excess hours in terms of type D credits limited only to traineeship experiences carried out at host organisations outside the University.

Academic year:
Semester 1  From 10/1/24 To 1/31/25
years Modules TAF Teacher
2° 3° Attention Laboratory D Pietro Sala (Coordinator)
2° 3° Elements of Cosmology and General Relativity D Claudia Daffara (Coordinator)
2° 3° Introduction to quantum mechanics for quantum computing D Claudia Daffara (Coordinator)
2° 3° Introduction to smart contract programming for ethereum D Sara Migliorini (Coordinator)
2° 3° Python programming language [English edition] D Carlo Combi (Coordinator)
2° 3° BEYOND ARDUINO: FROM PROTOTYPE TO PRODUCT WITH STM MICROCONTROLLER D Franco Fummi (Coordinator)
2° 3° APP REACT PLANNING D Graziano Pravadelli (Coordinator)
2° 3° HW components design on FPGA D Franco Fummi (Coordinator)
Semester 2 From 3/3/25 To 6/13/25
years Modules TAF Teacher
2° 3° Attention Laboratory D Pietro Sala (Coordinator)
2° 3° LaTeX Language D Enrico Gregorio (Coordinator)
2° 3° Python programming language [Edizione in italiano] D Carlo Combi (Coordinator)
2° 3° Rapid prototyping on Arduino D Franco Fummi (Coordinator)
2° 3° Programming Challanges D Romeo Rizzi (Coordinator)
2° 3° Tools for development of applications of virtual reality and mixed D Andrea Giachetti (Coordinator)
2° 3° Development and life cycle of software of artificial intelligence software D Marco Cristani (Coordinator)
2° 3° Protection of intangible assets (SW and invention)between industrial law and copyright D Mila Dalla Preda (Coordinator)
List of courses with unassigned period
years Modules TAF Teacher
Subject requirements: mathematics D Franco Zivcovich (Coordinator)

Teaching code

4S00035

Coordinator

Claudia Daffara

Credits

6

Language

Italian

Scientific Disciplinary Sector (SSD)

FIS/01 - EXPERIMENTAL PHYSICS

Period

Semester 2 dal Mar 3, 2025 al Jun 13, 2025.

Courses Single

Authorized

Learning objectives

The course aims to provide the tools for the understanding of electromagnetism and optics phenomena in classical physics, from the basic physical principles to the methodologies for applying the physical laws to the solution of problems. At the end of the course the student will: - have to demonstrate knowledge and understanding in applied contexts of the foundations that make up the functioning of an electromagnetic physical system; - have the ability to apply the acquired knowledge and have understanding skills to model aspects of an electromagnetic physical problem or parts of a device; - know how to interpret the physical meaning of a measurement acquired with optoelectronic instruments; - have the ability to broaden the knowledge to deepen topics of electromagnetism in an autonomous way.

Prerequisites and basic notions

Physics 1.
Calculus tools from mathematical analysis 1 and 2 (differentiation, integration, vectorial operators).

Program

- ELECTROSTATICS IN VACUUM
Experimental facts. Electric charge. Structure of matter. Coulomb law. Electric field E. Work of the electric field. Electrostatic potential energy and electrostatic potential. Flux of the field E. Gauss law and applications. Discontinuities of the electric field. Differential equations of the electric field. Poisson and Laplace equations.
- ELECTROSTATICS IN CONDUCTORS
Conductors in equilibrium. Electrostatic induction. Electrostatic surface pressure. Cavity in a conductor. Electrostatic screening. Capacity. Capacitors.
- ELECTROSTATICS IN DIELECTRICS
Electric dipole. Dipole in external field E. Energy of a dipole. Uniform / non-uniform polarization. Linear dielectrics. Electrostatics equations in dielectrics. Field D "electric displacement".
- ELECTROSTATIC ENERGY
system of charges, system of conductors. Energy of a capacitor in vacuum and in dielectric media. Energy of the electric field. Motion of charges in electric field.
- ELECTRICAL CURRENTS
Electric current, electromotive force. Classical theory of electrical conduction. Continuity equation for the charge.
Ohm law, joule effect, resistors. Kirchhoff laws, elementary circuits. Charge / discharge of a capacitor.
- MAGNETOSTATIC IN VACUUM
Experimental facts. Magnetic field B, F of Lorentz, II law of Laplace. Motion of charges in magnetic field. Hall effect, measure of B. Magnetic dipole. Dipole in external field B. Field B of stationary currents. Circulation Ampère law and applications. Discontinuities of the magnetic field. I law of Laplace. Field B of a moving charge. Solenoidal fields, concatenated flux. Differential equations of the magnetic field.
- TIME-VARYING FIELDS
Electromagnetic induction - experimental facts, flux law. Induced electric field and Faraday law. Lenz law. Energy balance. Mutual Inductance. Self-inductance, inductances. RL circuit.
Magnetic energy: intrinsic energy of the current, system of stationary currents. Energy of the magnetic field.
Maxwell equations in integral and local form. Displacement current and Ampère-Maxwell law. Radiation of a circuit.
- ELECTROMAGNETIC WAVES (BASICS)
Recalls on waves: transverse waves, longitudinal waves, harmonic wave, plane waves, spherical waves. D'Alembert wave equation. Maxwell equations in vacuum and the solution of e.m waves. Polarization. Speed ​​of light, energy transported, intensity. Polarization. Electromagnetic spectrum. Principles of Optics.

Didactic methods

Theoretical lessons and exercises in classroom at the dashboard.

Learning assessment procedures

Written examination (2 hours):
The exam includes
1) electromagnetism exercises (related to the exercises program carried out);
2) theory questions (related to the entire program).
Optional oral examination:
on the topics of the course program

Students with disabilities or specific learning disorders (SLD), who intend to request the adaptation of the exam, must follow the instructions given HERE

Evaluation criteria

- knowledge and understanding of the principles and the physical phenomena of classical electromagnetism
- to possess critical skills in the observation of electrical and magnetic phenomena with scientific method and adequate mathematical formalism
- to know how to apply the principles and the laws of physics to the different contexts for solving problems of electromagnetism.

Criteria for the composition of the final grade

Written examination contains three exercises (Electrostatics, Magnetism, Electromagnetism) + theoretical questions, for a total of 30/30.

Exam language

italiano