Studiare
In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.
Piano Didattico
Il piano didattico è l'elenco degli insegnamenti e delle altre attività formative che devono essere sostenute nel corso della propria carriera universitaria.
Selezionare il piano didattico in base all'anno accademico di iscrizione.
1° Anno
Insegnamenti | Crediti | TAF | SSD |
---|
Analisi matematica I
Architettura degli elaboratori
2° Anno Attivato nell'A.A. 2022/2023
Insegnamenti | Crediti | TAF | SSD |
---|
3° Anno Attivato nell'A.A. 2023/2024
Insegnamenti | Crediti | TAF | SSD |
---|
Un insegnamento a scelta
Insegnamenti | Crediti | TAF | SSD |
---|
Analisi matematica I
Architettura degli elaboratori
Insegnamenti | Crediti | TAF | SSD |
---|
Insegnamenti | Crediti | TAF | SSD |
---|
Un insegnamento a scelta
Insegnamenti | Crediti | TAF | SSD |
---|
Legenda | Tipo Attività Formativa (TAF)
TAF (Tipologia Attività Formativa) Tutti gli insegnamenti e le attività sono classificate in diversi tipi di attività formativa, indicati da una lettera.
Fisica II (2022/2023)
Codice insegnamento
4S00035
Docente
Coordinatore
Crediti
6
Lingua di erogazione
Italiano
Settore Scientifico Disciplinare (SSD)
FIS/01 - FISICA SPERIMENTALE
Periodo
Secondo semestre dal 6 mar 2023 al 16 giu 2023.
Obiettivi di apprendimento
Il corso si propone di fornire gli strumenti per la comprensione dei fenomeni di elettromagnetismo e di ottica in fisica classica, dai principi fisici di base alle metodologie per applicare le leggi fisiche alla soluzione di problemi. Al termine del corso lo studente dovrà dimostrare di: - avere conoscenze e capacità di comprensione in contesti applicati dei fondamenti che costituiscono il funzionamento di un sistema fisico elettromagnetico; - avere capacità di applicare le conoscenze acquisite e capacità di comprensione per modellare aspetti di un problema fisico elettromagnetico o parti di un dispositivo; - saper interpretare il significato fisico di una misura acquisita con strumenti optoelettronici; - saper ampliare le conosenze necessarie per approfondire argomenti di elettromagnetismo in modo autonomo.
Prerequisiti e nozioni di base
Fisica 1.
Strumenti di calcolo dell'analisi matematica 1 e 2 (derivate, integrali, operatori vettoriali).
Programma
- ELETTROSTATICA NEL VUOTO
Fatti sperimentali. Carica elettrica. Struttura della materia. Legge di Coulomb. Campo elettrostatico. Lavoro F elettrica. Energia potenziale elettrostatica e potenziale elettrostatico. Flusso del campo E. Teorema di Gauss e applicazioni. Discontinuità del campo elettrico. Equazioni differenziali del campo elettrico. Equazione di Poisson e di Laplace.
- ELETTROSTATICA NEI CONDUTTORI
Conduttori in equilibrio. Induzione elettrostatica. Pressione di carica superficiale. Cavità in un conduttore. Capacità. Condensatori.
- ELETTROSTATICA NEI DIELETTRICI
Dipolo elettrico. Dipolo in campo esterno E. Energia di dipolo. Polarizzazione uniforme/non uniforme. Dielettrici lineari.
Equazioni dell'elettrostatica nei dielettrici. Campo D “spostamento elettrico”.
- ENERGIA ELETTROSTATICA
sistema di cariche, sistema di conduttori. Energia del condensatore nel vuoto e nel dielettrico. Energia del campo elettrico. Moto di cariche in campo elettrico.
- CORRENTI ELETTRICHE
Corrente elettrica, forza elettromotrice. Modello classico della conduzione elettrica. Equazione di continuità per la carica.
Legge di Ohm, effetto joule, resistori. Carica/scarica di un condensatore. Leggi di Kirchhoff, circuiti elementari.
- MAGNETOSTATICA NEL VUOTO
Fatti sperimentali. Campo magnetico B, linee di campo, F di Lorentz, II legge elementare di Laplace. Moto di cariche in campo magnetico. Effetto Hall, misura di B. Dipolo magnetico. Dipolo in campo esterno B. Campo B di correnti stazionarie. Circuitazione di B. Teorema di Ampère e applicazioni. Discontinuità del campo magnetico. I legge elementare di Laplace. Campo B di una carica in moto. Campi solenoidali, flusso concatenato. Equazioni differenziali del campo magnetico.
- CAMPI VARIABILI NEL TEMPO
Induzione elettromagnetica - fatti sperimentali, legge del flusso, f.e.m. indotta, corrente indotta. Legge di Lenz. Bilanci energetici. Campo elettrico indotto, legge di Faraday. Induzione Mutua. Autoinduzione, induttanze. Circuito RL.
Energia magnetica: energia intrinseca della corrente, sistema di correnti stazionarie. Energia del campo magnetico.
Equazioni di Maxwell in forma integrale e locale. Corrente di spostamento e legge di Ampère-Maxwell. Radiazione di un circuito.
- ONDE ELETTROMAGNETICHE (CENNI)
Richiami di onde: onde trasversali, longitudinali, onde armoniche, onde piane, onde sferiche. Equazione delle onde di D’Alembert. Equazioni di Maxwell nel vuoto e la soluzione delle onde elettromagnetiche. Polarizzazione. Velocità della luce, energia trasportata, intensità. Spettro elettromagnetico. Principi di Ottica.
Bibliografia
Modalità didattiche
Lezioni frontali di teoria ed esercitazioni svolte alla lavagna.
Modalità di verifica dell'apprendimento
Esame scritto (2 ore)
La prova consiste in
1) esercizi di elettromagnetismo (attinenti al programma di esercitazioni svolto);
2) quesiti di teoria (attinenti all'intero programma svolto).
Esame orale facoltativo
Colloquio con il docente sugli argomenti del programma del corso
Criteri di valutazione
- conoscenza e comprensione dei principi e fenomeni fisici dell'elettromagnetismo classico
- possesso di capacità critiche nell'osservazione dei fenomeni elettromagnetici con metodo scientifico e adeguato formalismo matematico
- capacità di applicare principi e leggi della fisica ai diversi contesti per risolvere problemi base di elettromagnetismo.
Criteri di composizione del voto finale
L'esame scritto include tre esercizi tematici (Elettrostatica, Magnetostatica, Campi Variabili) + domande di teoria, per un totale di 30/30.
Lingua dell'esame
italiano