Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

A.A. 2019/2020

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
FISIO ROV 2A1S Oct 7, 2019 Dec 20, 2019
FISIO ROV 3A1S Oct 7, 2019 Nov 20, 2019
FISIO ROV 1A1S Oct 9, 2019 Dec 13, 2019
FISIO ROV 2A2S Feb 10, 2020 Apr 8, 2020
FISIO ROV 1A2S Mar 5, 2020 Jun 5, 2020
FISIO ROV 3A2S Mar 23, 2020 May 8, 2020
Exam sessions
Session From To
FISIO ROV SESSIONE INVERNALE 1 ANNO Jan 7, 2020 Jan 31, 2020
FISIO ROV SESSIONE INVERNALE 2 ANNO Jan 13, 2020 Feb 7, 2020
FISIO ROV SESSIONE INVERNALE 3 ANNO Jan 13, 2020 Jan 24, 2020
FISIO ROV SESSIONE ESTIVA 3 ANNO (1 appello) Mar 9, 2020 Mar 20, 2020
FISIO ROV SESSIONE ESTIVA 1 ANNO Jun 24, 2020 Jul 28, 2020
FISIO ROV SESSIONE ESTIVA 3 ANNO (2 appello) Jun 25, 2020 Jul 29, 2020
FISIO ROV SESSIONE ESTIVA 2 ANNO Jul 13, 2020 Jul 31, 2020
FISIO ROV SESSIONE AUTUNNALE Sep 1, 2020 Sep 30, 2020
Degree sessions
Session From To
FISIO SESSIONE AUTUNNALE Nov 1, 2020 Dec 22, 2020
FISIO SESSIONE PRIMAVERILE Mar 1, 2021 Apr 30, 2021
Holidays
Period From To
FESTIVITA' OGNISSANTI Nov 1, 2019 Nov 1, 2019
FESTIVITA' IMMACOLATA CONCEZIONE Dec 8, 2019 Dec 8, 2019
Vacanze di Natale Dec 24, 2019 Jan 6, 2020
VACANZE DI PASQUA Apr 10, 2020 Apr 15, 2020
FESTA DELLA LIBERAZIONE Apr 25, 2020 Apr 25, 2020
Festa del Lavoro May 1, 2020 May 1, 2020
FESTA DELLA REPUBBLICA Jun 2, 2020 Jun 2, 2020
FESTA S. PATRONO Aug 5, 2020 Aug 5, 2020
Other Periods
Description Period From To
FISIO ROV 3^ ANNO - 1^ SEMESTRE (1 periodo) FISIO ROV 3^ ANNO - 1^ SEMESTRE (1 periodo) Nov 21, 2019 Dec 20, 2019
FISIO ROV 3^ ANNO - 1^ SEMESTRE (2 periodo) FISIO ROV 3^ ANNO - 1^ SEMESTRE (2 periodo) Jan 27, 2020 Feb 28, 2020
FISIO ROV 1^ ANNO - 1^ SEMESTRE FISIO ROV 1^ ANNO - 1^ SEMESTRE Feb 3, 2020 Mar 4, 2020
FISIO ROV 2^ ANNO - 1^ SEMESTRE FISIO ROV 2^ ANNO - 1^ SEMESTRE Apr 20, 2020 May 22, 2020
FISIO ROV 3^ ANNO - 2^ SEMESTRE (1 periodo) FISIO ROV 3^ ANNO - 2^ SEMESTRE (1 periodo) May 11, 2020 Jun 17, 2020
FISIO ROV 2^ ANNO - 2^ SEMESTRE FISIO ROV 2^ ANNO - 2^ SEMESTRE Jun 3, 2020 Jul 10, 2020
FISIO ROV 3^ ANNO - 2^ SEMESTRE (2 periodo) FISIO ROV 3^ ANNO - 2^ SEMESTRE (2 periodo) Sep 1, 2020 Sep 29, 2020
FISIO ROV 1^ ANNO - 2^ SEMESTRE FISIO ROV 1^ ANNO - 2^ SEMESTRE Sep 1, 2020 Sep 29, 2020

Exam calendar

Exam dates and rounds are managed by the relevant Medicine Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrolment FAQs

Academic staff

B C D F G L M N P Q R S T Z

Bravi Elena

elena.bravi@apss.tn.it

Buffelli Mario Rosario

mario.buffelli@univr.it +39 0458027268

Dal Prà Ilaria Pierpaola

ilaria.dalpra@univr.it +39 045 802 7161

Feletti Alberto

alberto.feletti@univr.it 0458122695

Fiorio Mirta

mirta.fiorio@univr.it +39 0458425133

Fratta Pasini Anna Maria

annamaria.frattapasini@univr.it +39 045 8124749

Fumagalli Guido Francesco

guido.fumagalli@univr.it 045 802 7605 (dipartimento)

Gotte Giovanni

giovanni.gotte@univr.it 0458027694

Locatelli Francesca

francesca.locatelli@univr.it 045 8027655

Mantovani William

william.mantovani@univr.it

Pedrolli Carlo

carlo.pedrolli@apss.tn.it 0461903519

Pertile Riccardo

riccardo.pertile@apss.tn.it 0461 904694

Savazzi Silvia

silvia.savazzi@univr.it +39 0458027691

Sbarbati Andrea

andrea.sbarbati@univr.it +39 045 802 7266

Scapini Patrizia

patrizia.scapini@univr.it 0458027556

Signoretto Caterina

caterina.signoretto@univr.it 045 802 7195

Sità Chiara

chiara.sita@univr.it 0039.045.8028572

Tamburin Stefano

stefano.tamburin@univr.it +39 0458124285 (segreteria)

Tassinari Giancarlo

giancarlo.tassinari@univr.it +39 0458027153

Trabetti Elisabetta

elisabetta.trabetti@univr.it 045/8027209

Zanoni Roberta

roberta.zanoni@univr.it

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.

1° Year

ModulesCreditsTAFSSD
7
A/B
(BIO/16 ,BIO/17 ,MED/48)
6
A/B
(BIO/09 ,M-PSI/01)
5
A/B/C
(INF/01 ,MED/36 ,MED/42 ,MED/48)
7
A/B
(BIO/10 ,BIO/13 ,FIS/07 ,MED/01)
3
E/F
(L-LIN/12)

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




SPlacements in companies, public or private institutions and professional associations

The teaching is organized as follows:

Biochimica

Credits

2

Period

TERP 1A1S

Academic staff

Giovanni Gotte

Fisica applicata

Credits

2

Period

FISIO ROV 1A1S

Academic staff

Gianluca Lattanzi

Statistica descrittiva

Credits

1

Period

FISIO ROV 1A1S

Academic staff

Francesca Locatelli

Biologia applicata

Credits

2

Period

Lezioni CLID Rov. 1 semestre

Academic staff

Elisabetta Trabetti

Learning outcomes

The aim of this course is to provide basic skills of biology, biochemistry, physics and statistics, main-ly focusing on the most useful aspects for understanding and investigating biomedical problems as-sociated with physiotherapy and to provide the foundations of the experimental method for modern scientific and technological disciplines, to get students consolidate scientific accuracy and critical evaluation of experimental data. At the end of the course students will have reached the necessary skills to understand, describe and analyse natural, biological and physical phenomena, regarding bi-omedical issues. Students will be able to explain molecular and cellular mechanisms of the human body and to understand the pathogenic meaning of alterations. Students will be able to report topics related to aforementioned fields in a precise way, with critical evaluation and appropriate scientific language. Finally, students will have developed abilities to approach further topics, which will be part of next year courses, with good autonomy. APPLIED PHYSICS: The aim is to provide basic knowledge of physical quantity and fundamental laws of physics, par-ticularly of mechanics and its applications within biomedical phenomena and real situations. To ac-quire the ability to solve simple exercises of physics, mostly referring to biomechanical concepts, al-so applied to practical situations. BIOCHEMISTRY: to provide basic knowledge of organic chemistry and biochemistry, the relation between structure and function of the main biological macromolecular classes, molecular-metabolic regulation, the interconnections between biochemical processes and energetic transformations. APPLIED BIOLOGY: to provide knowledge of biology and human genetics in an evolutionary vi-sion related to the structural, functional and molecular characteristics of cellular processes of living organisms and a focus on basic mechanisms that set up cellular activity, reproduction, interaction and transmission of the normal and pathological hereditary traits in humans. DESCRIPTIVE STATISTICS: to provide bio-statistical knowledge, focusing on basic statistic methods for biomedical data analysis such as methods for collecting and summarizing clinical or ep-idemiological research data, probability calculations, generalizing the information collected on a sample to the population of origin, a graphic summary representation and interpretation of the main statistical results.

Program

------------------------
MM: BIOCHIMICA
------------------------
PREPARATORY CHEMISTRY (several notions are included in the basic knowledge required). 1. Atomic structure and periodic properties of the elements: matter composition, atom, atomic particles; atomic theory; quantum numbers, and orbitals; electronic configuration, periodic table and chemical reactivity of the elements; electronic affinity, electronegativity. 2. The chemical bond: molecules and ions; ionic and covalent bond; intermolecular forces; hydrogen bond. 3. Solutions and acid-base reactions: concentration of the solutions, acid-base theories of Arrhenius and Brőnsted-Lowry; hydracids, hydroxides, oxyacids; acid-base reactions; pH and buffer solutions. 4. Organic chemistry notions: carbon atom properties; hybrid orbitals; organic compounds classification: functional groups; hydrocarbons; alcohols, ethers, thiols, amines, aldehydes and ketones; carboxylic acids, esters, anhydrides. BIOCHEMISTRY 1. Constitutive elements of the living matter: polymeric structure of the biological macromolecules. 2. Protein structure and function: aminoacid classification, buffering power, peptide bond, levels of protein structure; fibrous and globular proteins; hemoglobin and myoglobin: structure, function, factors influencing the oxygen bond; hemoglobin variants; enzymes: classification, role in the chemical reactions, regulation of the enzymatic activity. 3. Vitamins: hydro- and lypo-soluble vitamins; co-enzymes. 4. Bio-energetics: metabolism; chemical transformations in the cell; spontaneous and non-spontaneous reactions of the metabolic reactions; ATP as “energy exchange coin”; biologically relevant redox reactions. 5. Carbohydrates structure and metabolism: mono- and disaccharides; polysaccharides; glycoconjugates; glycolysis and its regulation; gluconeogenesis; hints of the penthose phosphate pathway; synthesis of the glycogen. 6. Citric acid cycle and oxidative phosphorylation: mitochondria; acetyl-CoA synthesis; citric acid cycle control; respiratory chain and electron transport; ATP synthesis. 7. Lipids structure and metabolism: structural lipids and biological membranes; cholesterol; stock-reserve lipids; lipids digestion and fatty acid β-oxydation; keton bodies formation; hints of fatty acids biosynthesis. 8. Aminoacid metabolism: hints of gluco- and keto-forming aminoacids; transamination and oxidative deamination; the urea cycle. Frontal teaching is the exclusive method adopted in this Course.
------------------------
MM: FISICA APPLICATA
------------------------
Physical quantities and their measurement. Definition of a physical quantity. Unit consistency and conversions. Standards and units. Uncertainty and significant figures. The foundation of classical mechanics. Forces and motion. Newton’s laws of motion and their application. Motion description: displacement, velocity and acceleration. Work and kinetic energy. Potential energy and energy conservation. Momentum. Torque and angular momentum. Biomechanics. Lever systems in the human body. Equilibrium in the human body. Elements of mechanics of movement.
------------------------
MM: STATISTICA MEDICA
------------------------
• Use of statistics in health data • Collection and presentation of data • Measurement procedure and Variable types • Precision and accuracy of a measurement procedure • Tables 1 and 2 entries • Absolute and relative frequencies • Cumulative frequencies • Graphical representation of the data • Position and dispersion measures • Mode • Quantiles and median • Simple and weighted mean • Range and standard deviation • Coefficient of variation • Introduction to probability • Definition of probability • Rule of addition and multiplication • Independent and conditional probability • Introduction to statistical inference • The concept of statistical inference • Inference techniques • Binomial and Gauss distribution • confidence intervals • Hypothesis testing • Diagnostic and screening test • Sensitivity, specificity, positive predictive value of screening
------------------------
MM: BIOLOGIA APPLICATA
------------------------
• Characteristics of the living beings
• Chemistry of living organisms and biological molecules
• prokaryotic and eukaryotic cell: organization of the cell; internal membranes and compartmentalization; organelles, characteristics and functions: nucleus, ribosomes, RER, REL, Golgi, lysosomes, peroxisomes, cytoskeleton, cell wall, extracellular matrix. Animal and plant cells. Mitochondria and plastids (chloroplasts, amyloplasts, chromoplasts) and endosymbiont theory.
• Biological membranes: structure and proposed models; passage of materials across cell membranes: passive transport (facilitated diffusion and simple), osmosis, directly and indirectly active transport, co-transport. Exocytosis and endocytosis. Anchoring, tight and gap cell junctions in animal and plant cells.
• Cell communication: types of cellular communication: endocrine, paracrine, autocrine and iuxtacrine. Sending and receiving the signal.
• Organization of DNA in chromosomes, mitosis and meiosis. DNA and proteins, nucleosomes, heterochromatin, euchromatin, chromosome condensation. The cell cycle and its regulation. Mitosis, meiosis and sexual reproduction
• DNA and its role in heredity. DNA structure and replication.
• Gene expression: transcription, genetic code and translation. Gene definition.
• DNA mutations and mutagenesis
• Hereditary character transmission and Mendel’s laws; definition of phenotype, genotype, locus, gene, dominant and recessive allele, homozygosity and heterozygosity. Segregation and independent assortment. Independence and association. Crossing-over and recombination. Genetic determination of sex. Gene interactions. Incomplete dominance, condominance, multiple alleles, epistasis and polygeny.
• The human genome: karyotype analysis and pedigrees; autosomal recessive, autosomal dominant, X-linked diseases.

DIDACTIC METHOD
Attendance to lessons is mandatory.
Teaching methods consist of frontal lessons. In addition to the suggested texts, additional didactic supports are offered on the e-learning platform of the course.
Students can make an appointment directly with the teacher every time they need it throughout the academic year, by email.
Students are invited to choose a book among those indicated.

Examination Methods

Goal of the exam for the course of Propaedeutic physical and biological sciences: to verify students' advanced comprehension of the whole program topics and their capability to expose their reasoning in a critical and precise manner using an appropriate scientific terms.
6 examination sessions are foreseen in the whole Academic Year: 2 in the Winter Session after the Course ending, 2 in the Summer Session, and 2 in the Autumn session.
Students will undertake all modules if they have attended at least 75% of the frontal teaching activity of the entire Course; further information about exam organization is available in each module form.
The final mark (/out of 30) will derive from the evaluation of the 4 modules. Students will pass the examination if the overall rating of all modules, based on the weighted average of credits, is greater than or equal to 18/30. Students can retire or refuse the proposed mark.

Students, who do not pass all the 4 exam modules in the same session, will only have to cover the missing/insufficient part in one of the subsequent sessions, if only within the extra winter session of the next Academic Year. From the next summer session, students will need to take all the 4 modules.

Bibliografia

Reference texts
Author Title Publishing house Year ISBN Notes
Stefani M, Taddei N Chimica Biochimica e Biologia Applicata. Zanichelli ed., Bologna 2010
Solomon, Martin, Martin, Berg Elementi di Biologia (Edizione 7) EdiSES 2017 978-88-7959-938-2
Sadava, Hillis, Craig Heller, Hacker Elementi di Biologia e Genetica (Edizione 5) Zanichelli 2019
Lantieri PB, Risso D, Ravera G Elementi di Statistica Medica McGraw-Hill 2007
Verlato G, Zanolin ME Esercizi di Statistica Medica, Informatica ed Epidemiologia Libreria Cortina Editrice, Verona 2000
Paul Davidovits Fisica per le professioni sanitarie UTET Università 2015 8860084490
David L Nelson, Michael M Cox I principi di biochimica di Lehninger (Edizione 7) Zanichelli   9788808920690
Glantz SA Statistica per Discipline Biomediche (Edizione 6) McGraw-Hill 2007 9788838639258

Type D and Type F activities

Modules not yet included

Career prospects


Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details.

Graduation


Gestione carriere


Further services

I servizi e le attività di orientamento sono pensati per fornire alle future matricole gli strumenti e le informazioni che consentano loro di compiere una scelta consapevole del corso di studi universitario.