Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

A.A. 2018/2019

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Academic year:
Definition of lesson periods
Period From To
TPALL 1° ANNO 1° SEMESTRE Oct 1, 2018 Dec 21, 2018
TPALL 2° ANNO 1° SEMESTRE Oct 1, 2018 Dec 21, 2018
TPALL 3° ANNO 1° SEMESTRE Oct 1, 2018 Dec 21, 2018
TPALL 1° ANNO 2° SEMESTRE Feb 1, 2019 May 31, 2019
TPALL 2° ANNO 2° SEMESTRE Feb 1, 2019 May 31, 2019
TPALL 3° ANNO 2° SEMESTRE Feb 1, 2019 May 31, 2019

Exam calendar

Exam dates and rounds are managed by the relevant Medicine Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrolment FAQs

Academic staff

A B C F G L M N P R S T V Z

Liboi Elio Maria

elio.liboi@univr.it 0458027666

Longo Daniele

daniele.longo@apss.tn.it

Mantovani William

william.mantovani@univr.it

Mazzariol Annarita

annarita.mazzariol@univr.it 045 8027690

Micciolo Rocco

rocco.micciolo@economia.unitn.it

Mottes Monica

monica.mottes@univr.it +39 045 8027 184

Perbellini Luigi

luigi.perbellini@univr.it +39 045 812 4295

Pertile Riccardo

riccardo.pertile@apss.tn.it 0461 904694

Porru Stefano

stefano.porru@univr.it + 39 045 812 4294

Princivalle Andrea

andrea.princivalle@univr.it 045 8124805

Rizzi Corrado

corrado.rizzi@univr.it 045 802 7947

Scapini Patrizia

patrizia.scapini@univr.it 0458027556

Tardivo Stefano

stefano.tardivo@univr.it +39 045 802 7660

Torre Francesco

francesco.torre@apss.tn.it

Vivori Cinzia

cinzia.vivori@apss.tn.it

Zancanaro Carlo

carlo.zancanaro@univr.it 045 802 7157 (Medicina) - 8425115 (Scienze Motorie)

Zoccatelli Gianni

gianni.zoccatelli@univr.it +39 045 802 7952

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.

ModulesCreditsTAFSSD
5
B
(CHIM/07 ,MED/44 ,MED/50)
5
B
(IUS/07 ,MED/42 ,MED/50 ,M-PSI/06)
6
A/B
(MED/01 ,MED/42 ,MED/50)
Prova finale
7
E
(-)

1° Year

ModulesCreditsTAFSSD
3
E/F
(L-LIN/12)
8
A/B
(MED/42 ,MED/44 ,MED/45 ,MED/50)
6
A
(CHIM/03 ,CHIM/06 ,FIS/07)
9
B
(AGR/15 ,CHIM/09 ,CHIM/10 ,MED/42 ,MED/50)

3° Year

ModulesCreditsTAFSSD
5
B
(CHIM/07 ,MED/44 ,MED/50)
5
B
(IUS/07 ,MED/42 ,MED/50 ,M-PSI/06)
6
A/B
(MED/01 ,MED/42 ,MED/50)
Prova finale
7
E
(-)

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




SPlacements in companies, public or private institutions and professional associations

Teaching code

4S000462

Credits

6

Coordinatore

Renzo Campostrini

The teaching is organized as follows:

Chimica generale e inorganica

Credits

2

Period

TPALL 1° ANNO 1° SEMESTRE

Academic staff

Renzo Campostrini

Chimica organica

Credits

2

Period

TPALL 1° ANNO 1° SEMESTRE

Academic staff

Graziano Guella

Fisica applicata

Credits

2

Period

FISIO ROV 1^ ANNO - 1^ SEMESTRE

Academic staff

Gianluca Lattanzi

Learning outcomes

This course will provide students with the principal bases of physics and chemistry, to be subsequently applied in biochemistry, environmental sciences and human physiopathology.

Program

THE INORGANIC CHEMISTRY MODULE. Syllabus.
Atomic structure, fundamental particles, atomic dimensions. Elements and isotopes. The concept of mole and the Avogadro number, atomic weights. Atomic orbitals, relevant energy contents, geometry for hydrogen-like and poly-electronic elements. Electronic configurations of elements and periodic properties: volume and atomic radius, ionization potentials and electronic affinity.
Molecules, compounds, chemical bonds and molecular interactions. Molecules and molecular weights, molecules and chemical formula. Oxidation numbers. Nomenclature of inorganic compounds, general properties and chemical reactivity. Theory of the ionic bond. Valence bond theory, covalent bonds and dative bonds. Multiple bonds. Electronegativity. Sigma- and pi-orbitals. Hybridization of atomic orbitals. Delocalization and resonance.
Structure of polyatomic molecules. Intermolecular interactions, weak intermolecular forces, dipole-dipole interactions, hydrogen bonds.
Physical States of Matter, laws and properties, phase transitions. The Perfect gas model, laws of the gas state. State diagram of water. The liquid phase. Solutions: solute concentration methods.
Chemical reactions and reaction balance, weight calculations and stoichiometry. Acid and base reactions.

THE ORGANIC CHEMISTRY MODULE. Syllabus.
Introduction. The chemical peculiarities of the carbon atom. Hybridization sp3, sp2 and sp. Intramolecular forces (chemical bonds) and intermolecular forces in organic compounds. Covalent bonding in carbon compounds, types of bonding, polarity of bonds. Functional groups.
Alkanes: structure, isomerism, nomenclature, properties, combustion reaction.
Alkenes: structure, chemical and physical properties, nomenclature, isomerism.
Benzene and aromatic compounds: structure, nomenclature.
Alcohols and Phenols: structure, properties, nomenclature, natural occurrence
Halogen derivatives: structure, properties.
Aldehydes and ketones: structure, properties, Redox reactions
Carboxylic acids: structure, properties, acidity, nomenclature
Carboxylic acid derivatives: esters, amides, acid chlorides, anhydrides. Amino acids
Phase diagrams of organic substances. A guide to reading of their MSDS chart (physico-chemical properties). The logP scale

THE APPLIED PHYSICS MODULE. Syllabus.
1. Physical observables and physical laws. Fundamental and derived units. International System (M.K.S.), c.g.s. system, British units. Multiples and submultiples. Vectors and scalars.
2. Kinematics: displacement, velocity and acceleration. Uniform motion. Uniformly accelerated motion.
3. Dynamics: the three fundamental principles. Forces: vector representation, composition and decomposition. Measurements of forces: scales and dynamometer. Gravitational force, reaction forces, inertial forces. Torque. Levers.
4. Work. Kinetic and potential energy. Conservation of mechanical energy. Power.
5. States of matter. Density and pressure. Stevin’s law. Pascal principle, buoyancy. Atmospheric pressure. Flow. Bernoulli’s theorem. Viscosity. Hagen-Poiseuille law. Physics of the cardiovascular system.
6. Temperature and thermometers. Thermal expansion. Ideal gases. Heat. Phase transitions. Heat propagation. Thermoregulation in living organisms. Principles of thermodynamics. Metabolism.
7. Elastic waves: physical characteristics. Sound. Ultrasounds. Doppler effect.
8. Electric phenomena. Coulomb’s law. Electric field and electric potential. Capacitors and capacitance. Electric currents. Ohm’s laws. Resistors. Resistors in series and in parallel. Joule effect. Safety issues. Bioelectricity. Magnetic phenomena. Magnetic field. Biot-Savart law. Electromagnetic induction. Faraday’s law.
9. Electromagnetic waves. Spectrum of the electromagnetic waves. Optics. Snell’s law. Dispersion. Total internal reflection. Optical fibers. Thin lenses. Vision.
10. Structure of the atomic nucleus. Isotopes and nuclides. Radioactivity. Nuclear decays. Law of nuclear decay. Activity and half-life. Dosimetry.

Examination Methods

THE INORGANIC CHEMISTRY MODULE. Execution and modality of the examination.
The verification of the Inorganic Chemistry module is tested by a written examination performed at the same time of the Organic Chemistry one. An eventually oral examination is programmed only in the case of a not complete sufficiency acquired in the written counterpart. Written test consists in a set of open questions and numeric calculation exercises. Typically examination takes 1 hour long.
The number and the dates of the examinations are fixed according to the faculty instructions; time-schedule examinations are published at the beginning of each semester. To enrol for the final-examination the student must exclusively utilize the information processing system (Esse3).

THE ORGANIC CHEMISTRY MODULE. Execution and modality of the examination.
The verification of the Organic Chemistry module is sustained by a written test performed simultaneously with that of the General and Inorganic Chemistry. An eventual oral examination is required only in the event of a dubious written test. The written test consists in a set of open questions and numeric calculations to solve simple organic chemistry exercises. Typicall, the time available for this text is 1 hour.
The number and the dates of the examinations are decided in accordance with the Course-program instructions; time-schedule examinations are published at the beginning of each semester. To enrol for the final-examination the student must exclusively utilize the information processing system (Esse3)

THE APPLIED PHYSICS MODULE. Execution and modality of the examination.
The exam consists in a written test including multiple-choice questions and two open questions. Multiple-choice questions require the solution of specific problems with no need for a calculator.
The written test will be considered as “passed” with a minimum score of 16/30.

Bibliography

Reference texts
Author Title Publishing house Year ISBN Notes
Leonardo Palmisano, Mario Schiavello Elementi di Chimica EdiSES 2010
Harold Hart Chimica organica (Edizione 4) Zanichelli 2001

Type D and Type F activities

Academic year:

Modules not yet included

Career prospects


Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details.

Gestione carriere


Area riservata studenti


Graduation


Further services

I servizi e le attività di orientamento sono pensati per fornire alle future matricole gli strumenti e le informazioni che consentano loro di compiere una scelta consapevole del corso di studi universitario.