Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

A.A. 2015/2016

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
I semestre Oct 1, 2015 Jan 29, 2016
II semestre Mar 1, 2016 Jun 10, 2016
Exam sessions
Session From To
Sessione straordinaria Appelli d'esame Feb 1, 2016 Feb 29, 2016
Sessione estiva Appelli d'esame Jun 13, 2016 Jul 29, 2016
Sessione autunnale Appelli d'esame Sep 1, 2016 Sep 30, 2016
Degree sessions
Session From To
Sess. autun. App. di Laurea LM9 Oct 19, 2015 Oct 19, 2015
Sess. invern. 2016 Appelli di Laurea LM9 Mar 11, 2016 Mar 11, 2016
Sess. estiva App. di Laurea LM9 Jul 8, 2016 Jul 8, 2016
Sess. autun. 2016 App. di Laurea LM9 Oct 18, 2016 Oct 18, 2016
Sess. invern. 2017 App. di Laurea LM9 Mar 14, 2017 Mar 14, 2017
Holidays
Period From To
Festività dell'Immacolata Concezione Dec 8, 2015 Dec 8, 2015
Vacanze di Natale Dec 23, 2015 Jan 6, 2016
Vancanze di Pasqua Mar 24, 2016 Mar 29, 2016
Anniversario della Liberazione Apr 25, 2016 Apr 25, 2016
Festa del S. Patrono S. Zeno May 21, 2016 May 21, 2016
Festa della Repubblica Jun 2, 2016 Jun 2, 2016
Vacanze estive Aug 8, 2016 Aug 15, 2016

Exam calendar

Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrolment FAQs

Academic staff

A B C D F G K L M S T V

Assfalg Michael

michael.assfalg@univr.it +39 045 802 7949

Berton Giorgio

giorgio.berton@univr.it 045 8027126

Boaretti Marzia

marzia.boaretti@univr.it 045 8027661

Bossi Alessandra Maria

alessandramaria.bossi@univr.it 045 802 7946 (Studio) - 045 802 7833 (Laboratorio)

Cecconi Daniela

daniela.cecconi@univr.it +39 045 802 7056; Lab: +39 045 802 7087

Corbo Vincenzo

vincenzo.corbo@univr.it + 39 0458126029

Delledonne Massimo

massimo.delledonne@univr.it 045 802 7962; Lab: 045 802 7058

Dominici Paola

paola.dominici@univr.it 045 802 7966; Lab: 045 802 7956-7086

Fumagalli Guido Francesco

guido.fumagalli@univr.it 045 802 7605 (dipartimento)

Giorgetti Alejandro

alejandro.giorgetti@univr.it 045 802 7982

Krampera Mauro

mauro.krampera@univr.it 0458124034

Liptak Zsuzsanna

zsuzsanna.liptak@univr.it +39 045 802 7032

Lleo'Fernandez Maria Del Mar

maria.lleo@univr.it 045 8027194

Malerba Giovanni

giovanni.malerba@univr.it 045/8027685

Mazzariol Annarita

annarita.mazzariol@univr.it 045 8027690
Foto,  April 9, 2014

Monaco Ugo Luigi

hugo.monaco@univr.it 045 802 7903; Lab: 045 802 7907 - 045 802 7082

Montagnana Martina

martina.montagnana@univr.it +39 045 812 6698

Scarpa Aldo

aldo.scarpa@univr.it 045 8127457

Signoretto Caterina

caterina.signoretto@univr.it 045 802 7195

Tagliaro Franco

franco.tagliaro@univr.it 045 8124618-045 8124246

Vitulo Nicola

nicola.vitulo@univr.it 0458027982

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.

ModulesCreditsTAFSSD
2 courses to be chosen among the following
One course to be chosen among the following:
One course to be chosen among the following
ModulesCreditsTAFSSD
2 courses to be chosen among the following:
6
C
(MED/04)
Stage
2
F
-
Prova finale
40
E
(-)

1° Year

ModulesCreditsTAFSSD
2 courses to be chosen among the following
One course to be chosen among the following:
One course to be chosen among the following

2° Year

ModulesCreditsTAFSSD
2 courses to be chosen among the following:
6
C
(MED/04)
Stage
2
F
-
Prova finale
40
E
(-)

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




SPlacements in companies, public or private institutions and professional associations

Teaching code

4S003665

Teacher

Coordinatore

Ugo Luigi Monaco

Credits

6

Scientific Disciplinary Sector (SSD)

BIO/11 - MOLECULAR BIOLOGY

Language

English en

Period

II semestre dal Mar 1, 2016 al Jun 10, 2016.

Learning outcomes

The goal of the Structural Biology course for the degree in Molecular and Medical Biotechnology is to develop in the student the skills necessary to critically read and assess scientific papers in this branch of science, specially in crystallography since NMR is covered by another course.
After an introduction discussing the relative weight of the different techniques used to determine the three-dimensional structure of biomolecules, the course concentrates on the theory and practice of macromolecular crystallography.
The fundamentals of the theory of diffraction, the modern methods of data collection and the phase problem are covered in detail. In addition, papers selected from the current literature dealing with important biological structures are read and discussed.

Program

Introduction. Structural Biology. The Protein Data Bank. Methods used to determine the three-dimensional structure of macromolecules. Crystallography, Nuclear Magnetic Resonance and Electron Microscopy. The role of Biocrystallography in Structural Biology.

The theory of X-ray diffraction. Geometry of an X-ray scattering experiment. Scattering of a single electron and an atom. The atomic scattering factor. Structure factor. The structure factor of atoms not located at the origin. The diffraction pattern of a one-dimensional array of atoms. X-ray diffraction from a three-dimensional array of atoms. The von Laue scattering conditions. The structure factor of a crystal. Fourier transforms. Convolutions and their use in the computation of structure factors. Bragg’s law of diffraction.

Properties of crystals. Symmetry. Symmetry elements. Space groups. Reciprocal lattice. Preparation of macromolecular crystals. Properties of protein crystals. The relationship between the crystal lattice and the reciprocal lattice. The Ewald sphere. Determination of the space group and of the number of molecules in the unit cell of a macromolecular crystal.

Determination of the molecular structure by X-ray crystallography. The phase problem. Steps in determining the structure of a macromolecule. X-ray sources. Data collection methods. Solving the phase problem. The method of multiple isomorphous replacement. The Patterson function. Treatment of errors. Computation of electron density maps. Molecular replacement. Other methods used to solve the phase problem.

Model building and refinement. Interpretation of the electron density maps. Building the model. Refinement methods. Assessing the model quality. The R factor. Ramachandran plots. Checking the stereochemistry.

Some important results of Biocrystallography. Using the Fourier difference synthesis to study the function of proteins. Conformational changes. Time resolved Biocrystallography. The importance of synchrotron radiation.

Recommended textbooks:

Results

1) Liljas, A, Liljas, L., Piskur, J., Lindblom, G., Nissen, P & Kjeldgaard, M. (2009) Textbook of Structural Biology. World Scientific Publishing Singapore.

2) Branden, C. & Tooze, J. (1999) Introduction to Protein Structure. Second Edition. Garland Publishing, Inc., New York.


Methods

1) Rupp, B. (2010) Biomolecular Crystallography. Principles, Practice and Application to Structural Biology. Garland Science New York.

2) Cantor, C. R. & Schimmel, P. R. (1980) Biophysical Chemistry Volume 2. W. H. Freeman and Company, San Francisco.

3) Giacovazzo, C. (Editor) (1992) Fundamentals of Crystallography. Oxford University Press, Oxford.

5) McPherson, A. (1999) Crystallization of Biological Macromolecules. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

Examination Methods

Oral examination

Teaching materials

Type D and Type F activities

Modules not yet included

Career prospects


Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details.

Area riservata studenti


Attendance

As stated in point 25 of the Teaching Regulations for the A.Y. 2021/2022, attendance is not mandatory. However, professors may require students to attend lectures for a minimum of hours in order to be able to take the module exam, in which case the methods that will be used to check attendance will be explained at the beginning of the module. 
Please refer to the Crisis Unit's latest updates for the mode of teaching.

Gestione carriere


Graduation

List of theses and work experience proposals

theses proposals Research area
Studio delle proprietà di luminescenza di lantanidi in matrici proteiche Synthetic Chemistry and Materials: Materials synthesis, structure-properties relations, functional and advanced materials, molecular architecture, organic chemistry - Colloid chemistry
Stampa 3D di nanocompositi polimerici luminescenti per applicazioni in Nanomedicina Synthetic Chemistry and Materials: Materials synthesis, structure-properties relations, functional and advanced materials, molecular architecture, organic chemistry - New materials: oxides, alloys, composite, organic-inorganic hybrid, nanoparticles
3D-bioprinting biofabrication laboratory Various topics
Organ on-a-chip Various topics

Further services

I servizi e le attività di orientamento sono pensati per fornire alle future matricole gli strumenti e le informazioni che consentano loro di compiere una scelta consapevole del corso di studi universitario.