Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Academic calendar
The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.
Course calendar
The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..
Period | From | To |
---|---|---|
I semestre | Oct 1, 2019 | Jan 31, 2020 |
II semestre | Mar 2, 2020 | Jun 12, 2020 |
Session | From | To |
---|---|---|
Sessione invernale d'esame | Feb 3, 2020 | Feb 28, 2020 |
Sessione estiva d'esame | Jun 15, 2020 | Jul 31, 2020 |
Sessione autunnale d'esame | Sep 1, 2020 | Sep 30, 2020 |
Session | From | To |
---|---|---|
Sessione estiva di laurea LM9 | Jul 14, 2020 | Jul 14, 2020 |
Sessione autunnale di laurea LM9 | Oct 9, 2020 | Oct 9, 2020 |
Sessione invernale di laurea LM9 | Mar 12, 2021 | Mar 12, 2021 |
Period | From | To |
---|---|---|
Festa di Ognissanti | Nov 1, 2019 | Nov 1, 2019 |
Festa dell'Immacolata | Dec 8, 2019 | Dec 8, 2019 |
Vacanze di Natale | Dec 23, 2019 | Jan 6, 2020 |
Vacanze di Pasqua | Apr 10, 2020 | Apr 14, 2020 |
Festa della Liberazione | Apr 25, 2020 | Apr 25, 2020 |
Festa del lavoro | May 1, 2020 | May 1, 2020 |
Festa del Santo Patrono | May 21, 2020 | May 21, 2020 |
Festa della Repubblica | Jun 2, 2020 | Jun 2, 2020 |
vacanze estive | Aug 10, 2020 | Aug 23, 2020 |
Exam calendar
Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.
Should you have any doubts or questions, please check the Enrolment FAQs
Academic staff
Study Plan
The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.
Modules | Credits | TAF | SSD |
---|
1° Year
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Legend | Type of training activity (TTA)
TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.
Systems biology (2020/2021)
Teaching code
4S003680
Academic staff
Coordinatore
Credits
6
Also offered in courses
Language
English
Scientific Disciplinary Sector (SSD)
MED/04 - EXPERIMENTAL MEDICINE AND PATHOPHYSIOLOGY
Period
II semestre dal Mar 1, 2021 al Jun 11, 2021.
Learning outcomes
The class will provide the students with an overview of different aspects of Systems Biology applied to life and medical science. The class will be initially focused on general aspects of Systems Biology, including the concepts of complexity, emergent properties, abstraction, mathematical modeling and biological networks. the course will provide a number of examples regarding general principles and methods typical of systems biology, data-bases and software widely used in the field. Furthermore, in the course we will introduce as propaedeutic background, some examples of complex systems in biology, including signal transduction and metabolic networks. In the second part of the course we will proceed with the description of complex systems relevant to medicine, such as the immune systems, autoimmune diseases and cancer in the context of systems biology. Several examples will be explained and extensively illustrated. Moreover, a general view of systems biology in the context of a transition toward personalized medicine will be proposed. In the context of the degree, the class will provide the necessary bases to understand the interdisciplinary nature of biomedicine and bioinformatics.
Program
General concepts - foundations:
1) Complexity: definition, origin and nature of complexity in biology
2) The “emergent properties” of biological systems: the cellular and molecular circuits
3) Science based on thesis and the deductive method; science based on experimental data the inductive method
4) Systems Biology: definition and experimental connotation of Systems Biology
5) Why Systems Biology? The reductionist approach versus the holistic approach
6) The concept of model: predict the future in biology?
7) Static models: the network abstraction and the topological properties of biological networks
8) Dynamic models and biological kinetics
Methods in Systems Biology:
9) High-performance technologies (high throughput methods)
10) Bioinformatics
11) Biological database
12) Software for systems biology
13) Contexts of Systems Biology: transcriptomics, proteomics, metabolomics, etc.
Systems Biology in practice - applications of Systems Biology to biomedical contexts:
14) Networks and diseases
15) The immune system
16) Inflammatory mechanisms
17) Cancer
18) Neurodegenerative diseases
19) Autoimmune diseases
20) Systems pharmacology and drug discovery
Teaching methods consist of frontal lessons devoted to the transmission of basic and applied notions, as well as in computer exercises with tasks that will be assigned to students in order to apply the notions learned during lessons. The exercises will be performed at the Center for Computational Biomedicine (CBMC) of the University.
Author | Title | Publishing house | Year | ISBN | Notes |
---|---|---|---|---|---|
Masao Nagasaki • Ayumu Saito • Atsushi Doi Hiroshi Matsuno • Satoru Miyano | Foundations of Systems Biology | Springer | 2007 | 978-1-84882-022-7 |
Examination Methods
Written with multiple answer questions. Score will be in thirty, 18 to 30. The exam will test theoretic land applied skills useful to the study of physio-pathplogical processes, also in the context of specific examples of human pathologies.
Bibliography
Type D and Type F activities
years | Modules | TAF | Teacher |
---|---|---|---|
2° | Python programming language | D |
Maurizio Boscaini
(Coordinatore)
|
Career prospects
Module/Programme news
News for students
There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details.
Further services
I servizi e le attività di orientamento sono pensati per fornire alle future matricole gli strumenti e le informazioni che consentano loro di compiere una scelta consapevole del corso di studi universitario.
Graduation
List of theses and work experience proposals
theses proposals | Research area |
---|---|
Studio delle proprietà di luminescenza di lantanidi in matrici proteiche | Synthetic Chemistry and Materials: Materials synthesis, structure-properties relations, functional and advanced materials, molecular architecture, organic chemistry - Colloid chemistry |
Stampa 3D di nanocompositi polimerici luminescenti per applicazioni in Nanomedicina | Synthetic Chemistry and Materials: Materials synthesis, structure-properties relations, functional and advanced materials, molecular architecture, organic chemistry - New materials: oxides, alloys, composite, organic-inorganic hybrid, nanoparticles |
3D-bioprinting biofabrication laboratory | Various topics |
Organ on-a-chip | Various topics |
Attendance
As stated in point 25 of the Teaching Regulations for the A.Y. 2021/2022, attendance is not mandatory. However, professors may require students to attend lectures for a minimum of hours in order to be able to take the module exam, in which case the methods that will be used to check attendance will be explained at the beginning of the module.Please refer to the Crisis Unit's latest updates for the mode of teaching.