Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

Type D and Type F activities

This information is intended exclusively for students already enrolled in this course.
If you are a new student interested in enrolling, you can find information about the course of study on the course page:

Laurea magistrale in Medical bioinformatics - Enrollment from 2025/2026

Le attività formative di tipologia D sono a scelta dello studente, quelle di tipologia F sono ulteriori conoscenze utili all’inserimento nel mondo del lavoro (tirocini, competenze trasversali, project works, ecc.). In base al Regolamento Didattico del Corso, alcune attività possono essere scelte e inserite autonomamente a libretto, altre devono essere approvate da apposita commissione per verificarne la coerenza con il piano di studio. Le attività formative di tipologia D o F possono essere ricoperte dalle seguenti attività.

1. Insegnamenti impartiti presso l'Università di Verona

Comprendono gli insegnamenti sotto riportati e/o nel Catalogo degli insegnamenti (che può essere filtrato anche per lingua di erogazione tramite la Ricerca avanzata).

Modalità di inserimento a libretto: se l'insegnamento è compreso tra quelli sottoelencati, lo studente può inserirlo autonomamente durante il periodo in cui il piano di studi è aperto; in caso contrario, lo studente deve fare richiesta alla Segreteria, inviando a carriere.scienze@ateneo.univr.it il modulo nel periodo indicato.

2. Attestato o equipollenza linguistica CLA

Oltre a quelle richieste dal piano di studi, per gli immatricolati dall'A.A. 2021/2022 vengono riconosciute:

  • Lingua inglese: vengono riconosciuti 3 CFU per ogni livello di competenza superiore a quello richiesto dal corso di studio (se non già riconosciuto nel ciclo di studi precedente).
  • Altre lingue e italiano per stranieri: vengono riconosciuti 3 CFU per ogni livello di competenza a partire da A2 (se non già riconosciuto nel ciclo di studi precedente).

Tali cfu saranno riconosciuti, fino ad un massimo di 6 cfu complessivi, di tipologia F se il piano didattico lo consente, oppure di tipologia D. Ulteriori crediti a scelta per conoscenze linguistiche potranno essere riconosciuti solo se coerenti con il progetto formativo dello studente e se adeguatamente motivati.

Gli immatricolati fino all'A.A. 2020/2021 devono consultare le informazioni che si trovano qui.

Modalità di inserimento a librettorichiedere l’attestato o l'equipollenza al CLA e inviarlo alla Segreteria Studenti - Carriere per l’inserimento dell’esame in carriera, tramite mail: carriere.scienze@ateneo.univr.it

3. Competenze trasversali

Scopri i percorsi formativi promossi dal TALC - Teaching and learning center dell'Ateneo, destinati agli studenti regolarmente iscritti all'anno accademico di erogazione del corso https://talc.univr.it/it/competenze-trasversali

Modalità di inserimento a libretto: non è previsto l'inserimento dell'insegnamento nel piano di studi. Solo in seguito all'ottenimento dell'Open Badge verranno automaticamente convalidati i CFU a libretto. La registrazione dei CFU in carriera non è istantanea, ma ci saranno da attendere dei tempi tecnici.  

4. Periodo di stage/tirocinio

Oltre ai CFU previsti dal piano di studi (verificare attentamente quanto indicato sul Regolamento Didattico): qui informazioni su come attivare lo stage. 

Verificare nel regolamento quali attività possono essere di tipologia D e quali di tipologia F.

Insegnamenti e altre attività che si possono inserire autonomamente a libretto

 
Academic year:
1° periodo lezioni (1A) From 9/16/21 To 10/30/21
years Modules TAF Teacher
The fashion lab (1 ECTS) D Caterina Fratea (Coordinator)
Primo semestre From 10/4/21 To 1/28/22
years Modules TAF Teacher
1° 2° Data Analysis for Biomedical Sciences D Gloria Menegaz (Coordinator)
1° 2° Introduction to Robotics for students of scientific courses. D Paolo Fiorini (Coordinator)
1° 2° Matlab-Simulink programming D Bogdan Mihai Maris (Coordinator)
1° periodo lezioni (1B) From 11/5/21 To 12/16/21
years Modules TAF Teacher
The fashion lab (1 ECTS) D Caterina Fratea (Coordinator)
Secondo semestre From 3/7/22 To 6/10/22
years Modules TAF Teacher
1° 2° Introduction to Robotics for students of scientific courses. D Paolo Fiorini (Coordinator)
1° 2° Introduction to 3D printing D Franco Fummi (Coordinator)
1° 2° HW components design on FPGA D Franco Fummi (Coordinator)
1° 2° Rapid prototyping on Arduino D Franco Fummi (Coordinator)
1° 2° Protection of intangible assets (SW and invention)between industrial law and copyright D Roberto Giacobazzi (Coordinator)
List of courses with unassigned period
years Modules TAF Teacher
1° 2° Python programming language D Giulio Mazzi (Coordinator)

Teaching code

4S009830

Credits

12

Coordinator

Rosalba Giugno

Language

English en

Scientific Disciplinary Sector (SSD)

INF/01 - INFORMATICS

The teaching is organized as follows:

Teoria

Credits

6

Period

Primo semestre, Secondo semestre

Academic staff

Rosalba Giugno

Laboratorio

Credits

6

Period

Primo semestre, Secondo semestre

Academic staff

Rosalba Giugno

Learning outcomes

Knowledge and understanding The course aims to provide students with the knowledge and understanding of the paradigms and advanced programming tools for the management of biomedical / bioinformatic data and information. Applying knowledge and understanding The student will therefore be able to a) apply the paradigms and advanced programming tools for the analysis of genomic, transcriptomics and proteomics data; b) apply the code performance analysis and identify critical issues and their optimization. Making judgements Ability to independently propose effective and efficient solutions for the biomedical and bioinformatics application domain; ability to identify critical issues for the treatment of complex bioinformatics problems. Communication The student will also be able to interact with various interlocutors in a multidisciplinary biomedical and bioinformatics context, to interact with colleagues in the performance of group work, and to interact with the interlocutors in the working or research environment. Lifelong learning skills Ability to understand scientific literature in the process of interpreting the results or proposed solution, and to carry out individual and group in-depth studies aimed at tackling problems from the research and business world.

Program

R Programming
Overview and History of R
Workspace and Files
Objects and Data Structures
Missing Values
Sequence of Numbers
Subsetting
Split-Apply-Combine Functions
Simulation
Reading Tabular Data
Logic
Control Structures
I/O operations
Functions
Base Graphics
Advanced Graphics


R for Bioinformatics
Overview of BioConductor
Basic BioConductor Data Structures: IRanges and GenomicRanges
Classes and functions for representing biological strings: Biostrings
Classes and functions for representing genomes: BSgenome, GenomicRanges,
Annotation functions and overview of annotation web tools

RNA-SEQ Data Analysis using R/Python and web tools
Introduction to NGS technologies and experimental design
Data Pre-processing, from Fastq to BAM
Indexing Reference Genome
Mapping reads to a reference genome
Sorting and indexing alignment
Map quality control
Variant Discovery and Call set Refinement
Differential Analysis
Limma, Glimma, EdgeR
DESeq2
Practice on coding RNA and ncRNA detection and analysis



Advanced Analyses of biological data in R: methods for graphs and networks.
Networks in igraph
Create networks
Edge, vertex, and network attributes
Specific graphs and graph models
Reading network data from files
Turning networks into igraph objects
Plotting networks with igraph
Network and node descriptives
Distances and paths
Subgroups and communities
Assortativity and Homophily
Reconstruction and analysis of co-regulatory and co-espressed networks

The course includes lectures on advanced topics such as Computational methods for the analysis of personal genomes, graph mining, and multilayer networks. Topics are defined each year in base of the current trends in medical bioinformatics research. Students will have the possibility to use software related to the chosen topics and analyze real cases.

Bibliography

Visualizza la bibliografia con Leganto, strumento che il Sistema Bibliotecario mette a disposizione per recuperare i testi in programma d'esame in modo semplice e innovativo.

Examination Methods

The exam consists of a written part (A) and the development of a project (B). (A) consists in developing during the test day exercises and theoretical questions on the course program. (B) is the development of a project agreed upon with the teacher to be developed i class and/or at home (this depends on project's typology) (the project is valid throughout the academic year). The projects have different levels of difficulty. Every difficulty corresponds to a maximum evaluation value.

Voting for parts A and B is expressed in thirty.

The final vote is calculated as min (31, ((A + B) / 2) + C).
C is expressed in the interval [-4, + 4] and reflects the maturation and scientific autonomy acquired during the development of the tests and the project, in the exposure and in the interpretation of the scientific literature and the scientific context of the project.

Students with disabilities or specific learning disorders (SLD), who intend to request the adaptation of the exam, must follow the instructions given HERE