Studiare
In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.
Tipologia di Attività formativa D e F
Queste informazioni sono destinate esclusivamente agli studenti e alle studentesse già iscritti a questo corso.Se sei un nuovo studente interessato all'immatricolazione, trovi le informazioni sul percorso di studi alla pagina del corso:
Laurea magistrale in Medical bioinformatics - Immatricolazione dal 2025/2026Le attività formative di tipologia D sono a scelta dello studente, quelle di tipologia F sono ulteriori conoscenze utili all’inserimento nel mondo del lavoro (tirocini, competenze trasversali, project works, ecc.). In base al Regolamento Didattico del Corso, alcune attività possono essere scelte e inserite autonomamente a libretto, altre devono essere approvate da apposita commissione per verificarne la coerenza con il piano di studio. Le attività formative di tipologia D o F possono essere ricoperte dalle seguenti attività.
1. Insegnamenti impartiti presso l'Università di Verona
Comprendono gli insegnamenti sotto riportati e/o nel Catalogo degli insegnamenti (che può essere filtrato anche per lingua di erogazione tramite la Ricerca avanzata).
Modalità di inserimento a libretto: se l'insegnamento è compreso tra quelli sottoelencati, lo studente può inserirlo autonomamente durante il periodo in cui il piano di studi è aperto; in caso contrario, lo studente deve fare richiesta alla Segreteria, inviando a carriere.scienze@ateneo.univr.it il modulo nel periodo indicato.
2. Attestato o equipollenza linguistica CLA
Oltre a quelle richieste dal piano di studi, per gli immatricolati dall'A.A. 2021/2022 vengono riconosciute:
- Lingua inglese: vengono riconosciuti 3 CFU per ogni livello di competenza superiore a quello richiesto dal corso di studio (se non già riconosciuto nel ciclo di studi precedente).
- Altre lingue e italiano per stranieri: vengono riconosciuti 3 CFU per ogni livello di competenza a partire da A2 (se non già riconosciuto nel ciclo di studi precedente).
Tali cfu saranno riconosciuti, fino ad un massimo di 6 cfu complessivi, di tipologia F se il piano didattico lo consente, oppure di tipologia D. Ulteriori crediti a scelta per conoscenze linguistiche potranno essere riconosciuti solo se coerenti con il progetto formativo dello studente e se adeguatamente motivati.
Gli immatricolati fino all'A.A. 2020/2021 devono consultare le informazioni che si trovano qui.
Modalità di inserimento a libretto: richiedere l’attestato o l'equipollenza al CLA e inviarlo alla Segreteria Studenti - Carriere per l’inserimento dell’esame in carriera, tramite mail: carriere.scienze@ateneo.univr.it
3. Competenze trasversali
Scopri i percorsi formativi promossi dal TALC - Teaching and learning center dell'Ateneo, destinati agli studenti regolarmente iscritti all'anno accademico di erogazione del corso https://talc.univr.it/it/competenze-trasversali
Modalità di inserimento a libretto: non è previsto l'inserimento dell'insegnamento nel piano di studi. Solo in seguito all'ottenimento dell'Open Badge verranno automaticamente convalidati i CFU a libretto. La registrazione dei CFU in carriera non è istantanea, ma ci saranno da attendere dei tempi tecnici.
4. Contamination lab
Il Contamination Lab Verona (CLab Verona) è un percorso esperienziale con moduli dedicati all'innovazione e alla cultura d'impresa che offre la possibilità di lavorare in team con studenti e studentesse di tutti i corsi di studio per risolvere sfide lanciate da aziende ed enti. Il percorso permette di ricevere 6 CFU in ambito D o F. Scopri le sfide: https://www.univr.it/clabverona
ATTENZIONE: Per essere ammessi a sostenere una qualsiasi attività didattica, incluse quelle a scelta, è necessario essere iscritti all'anno di corso in cui essa viene offerta. Si raccomanda, pertanto, ai laureandi delle sessioni di dicembre e aprile di NON svolgere attività extracurriculari del nuovo anno accademico, cui loro non risultano iscritti, essendo tali sessioni di laurea con validità riferita all'anno accademico precedente. Quindi, per attività svolte in un anno accademico cui non si è iscritti, non si potrà dar luogo a riconoscimento di CFU.
Insegnamenti e altre attività che si possono inserire autonomamente a libretto valide per l'a.a. 2024/25
anni | Insegnamenti | TAF | Docente |
---|---|---|---|
1° 2° | Attention laboratory | D |
Pietro Sala
(Coordinatore)
|
1° 2° | Elementi di Cosmologia e Relatività generale | D |
Claudia Daffara
(Coordinatore)
|
1° 2° | Introduzione alla meccanica quantistica per il quantum computing | D |
Claudia Daffara
(Coordinatore)
|
1° 2° | Introduzione alla programmazione di smart contract per Ethereum | D |
Sara Migliorini
(Coordinatore)
|
1° 2° | Linguaggio programmazione Python [English edition] | D |
Carlo Combi
(Coordinatore)
|
1° 2° | Mini-course on Deep Learning & Medical Imaging | D |
Vittorio Murino
(Coordinatore)
|
1° 2° | Oltre Arduino: dal prototipo al prodotto con microcontroller STM | D |
Franco Fummi
(Coordinatore)
|
1° 2° | Progettazione di app REACT | D |
Graziano Pravadelli
(Coordinatore)
|
1° 2° | Progettazione di componenti hardware su FPGA | D |
Franco Fummi
(Coordinatore)
|
anni | Insegnamenti | TAF | Docente |
---|---|---|---|
1° 2° | Attention laboratory | D |
Pietro Sala
(Coordinatore)
|
1° 2° | Linguaggio Programmazione LaTeX | D |
Enrico Gregorio
(Coordinatore)
|
1° 2° | Linguaggio programmazione Python [Edizione in italiano] | D |
Carlo Combi
(Coordinatore)
|
1° 2° | Prototipizzazione con Arduino | D |
Franco Fummi
(Coordinatore)
|
1° 2° | Sfide di programmazione | D |
Romeo Rizzi
(Coordinatore)
|
1° 2° | Tutela dei beni immateriali (SW e invenzione) tra diritto industriale e diritto d’autore | D |
Mila Dalla Preda
(Coordinatore)
|
Computational analysis of genome-scale sequences (2024/2025)
Codice insegnamento
4S009834
Docente
Coordinatore
Crediti
6
Lingua di erogazione
Inglese
Settore Scientifico Disciplinare (SSD)
INF/01 - INFORMATICA
Periodo
I semestre dal 1 ott 2024 al 31 gen 2025.
Corsi Singoli
Autorizzato
Obiettivi di apprendimento
Il corso mira a far conoscere agli studenti le principali strutture dati avanzati per l'analisi di sequenze genomiche ed in generale di dati testuali. Conoscenza e capacità di comprensione Fornire le conoscenze e le competenze necessarie per la comprensione dei parametri fondamentali nel campo di algoritmi su sequenze, delle soluzioni a problemi tipici di analisi di dati genomici usando diverse strutture dati avanzati su sequenze, insieme all'analisi dei costi computazionali (spazio e tempo) di tali soluzioni. Conoscenze applicate e capacità di comprensione Al termine del corso lo studente dovrà dimostrare di saper tradurre tipici problemi di analisi di sequenze genomiche in operazioni e algoritmi su indici testuali e valutarne il costo computazionale. Autonomia di giudizio Al termine del corso lo studente dovrà dimostrare di saper giudicare se un algoritmo o una struttura dati per un dato problema su sequenze genomiche sono adatti o meno, incluso la valutazione del costo computazionale. Abilità comunicative Alla fine del corso lo studente sarà in grado di formalizzare correttamente degli algoritmi su sequenze con o senza l'uso delle strutture dati avanzate. Capacità di apprendere Alla fine del corso lo studente sarà in grado di leggere e comprendere autonomamente articoli scientifici e testi specialistici che utilizzano strutture dati avanzate per l'analisi di dati testuali.
Prerequisiti e nozioni di base
Algoritmi e strutture dati. Non sono necessarie conoscenze di biologia per seguire il corso.
Programma
Nel recente avanzamento notevole della ricerca in biologia computazionale, l'uso delle strutture dati per sequenze genomiche e altre sequenze biologiche, e' stato fondamentale. Inoltre i metodi si applicano anche a tutti gli altri tipi di dati testuali.
L'esplosione della quantità di dati a nostra disposizione ("big data") presenta una delle sfide più importanti in informatica oggi. Tanti di questi dati sono di carattere testuale (o facilmente si possono presentare in forma testuale): sequenze genomiche o di altri tipi provenienti dalla biologia computazionale; pagine web / web crawl data; grandi quantità di posta elettronica; libri scannerizzati; dati musicali; ecc. Per poter memorizzare ed elaborare questi dati, ma sopratutto per poter estrarne informazioni utili, abbiamo bisogno di strutture dati e algoritmi dedicati, cioè sviluppati specificamente per applicazioni su dati testuali di grandi dimensioni, cosidetti "indici testuali" (text indices).
Programma del corso:
1) introduzione alle stringhe (sequenze), le loro proprietà e delle questioni fondamentali al riguardo: dimensione dell'alfabeto, confronto dei caratteri, ordinamento delle stringhe
2) algoritmi classici di pattern matching non basati su indici: Knuth-Morris-Pratt, Boyer-Moore, Karp-Rabin, possibilmente Aho-Corasick
3) Strutture dati per stringhe I:
- tries
- suffix trees
4) Strutture dati per stringhe II:
- suffix arrays e strutture dati correlate
- Burrows-Wheeler Transform (BWT), FM-index
Per ognuna delle strutture dati, studieremo le loro caratteristiche, algoritmi di costruzione efficienti ed applicazioni ai problemi specifici.
Non sono necessarie conoscenze di biologia per seguire il corso.
Bibliografia
Modalità didattiche
Lezioni frontali, esercitazioni, compiti a casa con discussione in classe. In situazioni speciali si può chiedere l'accesso allo streaming.
Modalità di verifica dell'apprendimento
Esame finale: scritto e orale. Nello scritto saranno richieste sia proprieta' degli algoritmi e strutture dati studiati (per es. tempo e spazio richiesti), sia di applicarli su esempi concreti. Nell'orale saranno approfondite le domande dello scritto, tale che lo studente possa dimostrare le sue conoscenze.
Non è previsto un esame specifico per studenti non-frequentanti.
Criteri di valutazione
L'esame accertera' che lo studente
- abbia acquisito conoscenze dei problemi principali riguardante la gestione delle sequenze e stringhe (alfabeto, confronto di stringhe, dimensioni di sequenze genomiche e altre)
- sappia applicare, spiegare, e analizzare gli algoritmi studiati per pattern matching non index-based
- sappia applicare, spiegare e analizzare le strutture dati studiate, lo spazio che richiedono e algoritmi di costruzione (inverted index, trie, suffix tree, suffix array, BWT)
- sappia applicare, spiegare e analizzare varie applicazioni di queste strutture dati: come usarle per risolvere problemi su stringhe, quali pattern matching, matching statistics, palindromes, LZ-compression ecc.
Criteri di composizione del voto finale
valutazione completa basata sullo scritto e sull'orale
Lingua dell'esame
English