Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Type D and Type F activities
This information is intended exclusively for students already enrolled in this course.If you are a new student interested in enrolling, you can find information about the course of study on the course page:
Laurea magistrale in Medical bioinformatics - Enrollment from 2025/2026Type D learning activities are the student's choice, type F activities are additional knowledge useful for job placement (internships, transversal skills, project works, etc.). According to the Teaching Regulations of the Course, some activities can be chosen and entered independently in the booklet, others must be approved by a special committee to verify their consistency with the study plan. Type D or F learning activities can be covered by the following activities.
1. Modules taught at the University of Verona
Include the modules listed below and/or in the Course Catalogue (which can also be filtered by language of delivery via Advanced Search).
Booklet entry mode: if the teaching is included among those listed below, the student can enter it independently during the period in which the curriculum is open; otherwise, the student must make a request to the Secretariat, sending the form to carriere.scienze@ateneo.univr.it during the period indicated.
2. CLA certificate or language equivalency
In addition to those required by the curriculum/study plan, the following are recognized for those matriculated from A.Y. 2021/2022:
- English language: 3 CFUs are recognized for each level of proficiency above that required by the course of study (if not already recognized in the previous course of study).
- Other languages and Italian for foreigners: 3 CFUs are recognized for each proficiency level starting from A2 (if not already recognized in the previous study cycle).
These CFUs will be recognized, up to a maximum of 6 CFUs in total, of type F if the study plan allows it, or of type D. Additional elective credits for language knowledge may be recognized only if consistent with the student's educational project and if adequately justified.
Those enrolled until A.Y. 2020/2021 should consult the information found here.
Method of inclusion in the booklet: request the certificate or equivalency from CLA and send it to the Student Secretariat - Careers for the inclusion of the exam in the career, by email: carriere.scienze@ateneo.univr.it
3. Transversal skills
Discover the training paths promoted by the University's TALC - Teaching and learning center intended for students regularly enrolled in the academic year of course delivery https://talc.univr.it/it/competenze-trasversali
Mode of inclusion in the booklet: the teaching is not expected to be included in the curriculum. Only upon obtaining the Open Badge will the booklet CFUs be automatically validated. The registration of CFUs in career is not instantaneous, but there will be some technical time to wait.
4. Contamination lab
The Contamination Lab Verona (CLab Verona) is an experiential course with modules on innovation and enterprise culture that offers the opportunity to work in teams with students from all areas to solve challenges set by companies and organisations.
Upon completion of a CLab, students will be entitled to receive 6 CFU (D- or F-type credits).
Find out more: https://www.univr.it/clabverona
PLEASE NOTE: In order to be admitted to any teaching activities, including those of your choice, you must be enrolled in the academic year in which the activities in question are offered. Students who are about to graduate in the December and April sessions are therefore advised NOT to undertake extracurricular activities in the new academic year in which they are not enrolled, as these graduation sessions are valid for students enrolled in the previous academic year. Therefore, students who undertake an activity in an academic year in which they are not enrolled will not be granted CFU credits.
5. Internship/internship period
In addition to the CFUs stipulated in the curriculum/study plan (check carefully what is indicated on the Teaching Regulations) here you can find information on how to activate the internship.
Check in the regulations which activities can be Type D and which can be Type F.
Please also note that for traineeships activated after 1 October 2024, it will be possible to recognise excess hours in terms of type D credits, limited only to traineeship experiences carried out at host organisations outside the University.
years | Modules | TAF | Teacher |
---|---|---|---|
1° 2° | Attention Laboratory | D |
Pietro Sala
(Coordinator)
|
1° 2° | Elements of Cosmology and General Relativity | D |
Claudia Daffara
(Coordinator)
|
1° 2° | Introduction to quantum mechanics for quantum computing | D |
Claudia Daffara
(Coordinator)
|
1° 2° | Introduction to smart contract programming for ethereum | D |
Sara Migliorini
(Coordinator)
|
1° 2° | Python programming language [English edition] | D |
Carlo Combi
(Coordinator)
|
1° 2° | Mini-course on Deep Learning & Medical Imaging | D |
Vittorio Murino
(Coordinator)
|
1° 2° | BEYOND ARDUINO: FROM PROTOTYPE TO PRODUCT WITH STM MICROCONTROLLER | D |
Franco Fummi
(Coordinator)
|
1° 2° | APP REACT PLANNING | D |
Graziano Pravadelli
(Coordinator)
|
1° 2° | HW components design on FPGA | D |
Franco Fummi
(Coordinator)
|
years | Modules | TAF | Teacher |
---|---|---|---|
1° 2° | Attention Laboratory | D |
Pietro Sala
(Coordinator)
|
1° 2° | LaTeX Language | D |
Enrico Gregorio
(Coordinator)
|
1° 2° | Python programming language [Edizione in italiano] | D |
Carlo Combi
(Coordinator)
|
1° 2° | Rapid prototyping on Arduino | D |
Franco Fummi
(Coordinator)
|
1° 2° | Programming Challanges | D |
Romeo Rizzi
(Coordinator)
|
1° 2° | Protection of intangible assets (SW and invention)between industrial law and copyright | D |
Mila Dalla Preda
(Coordinator)
|
Medical imaging techniques: principles and applications (2024/2025)
Teaching code
4S009836
Academic staff
Coordinator
Credits
6
Language
English
Scientific Disciplinary Sector (SSD)
FIS/07 - APPLIED PHYSICS
Period
Semester 2 dal Mar 3, 2025 al Jun 13, 2025.
Courses Single
Authorized
Learning objectives
Aim of the course is to provide students with an introduction to modern medical imaging methods. Knowledge and understanding. At the end of the course, the student will be able to describe the physical principles behind the different imaging techniques (ultrasounds, X-rays, nuclear medicine, magnetic resonance and optical imaging). Applying knowledge and understanding. Specifically, the student will be able to demonstrate an understanding of the principles underlying image quality and contrast, spatial resolution and time resolution, and get awareness of their main clinical/biological applications. Making judgements. The student shall demonstrate to be able to plan and realize a simple project whose goal is to acquire data with real acquisition equipment, e.g., magnetic resonance scanner, to reconstruct the images from the raw data and to properly visualize/inspect them. Communication. The student will demonstrate to be able to properly present to a qualified audience the knowledge acquired during the course. Lifelong learning skills. The student will have the basic knowledge that will allow him to read and understand scientific papers in the field, and present the main findings.
Prerequisites and basic notions
Knowledges acquired during the bachelor degree.
Program
Detailed program
- Ultrasound Imaging
Mechanical and electromagnetic waves. Reflection and refraction of waves: total reflection. Mechanical waves: sound waves, intensity, impedance, Doppler effect. Ultrasounds (US). Production and detection of US: Piezoelectric materials, Transducers. Propagation speed. Interaction of US with matter: reflection, refraction, scattering. Attenuation of ultrasounds. The dB. Block diagram of an ultrasound system. Properties of the ultrasound beam. Spatial resolution. Operation in A mode and B mode. Diagnostic use of the Doppler effect. Contrast Agents for US. Advanced applications.
- X-rays Imaging
Electromagnetic waves, em spectrum. Production of X-rays. X-ray spectrum, Bremsstrahlung effect, continuous spectrum and characteristic spectrum. Radiation-matter interaction: scattering Rayleigh, scattering Compton, photoelectric effect, pairs production. X-ray attenuation. Linear attenuation coefficient of biological tissues. Formation of Radiological image. Contrast. Tomographic reconstruction (back projection reconstruction). Computed tomography (CT) 1st, 2nd, 3rd generation machines. 4th generation machines and spiral computed tomography (Spiral CT). Block diagram of CT equipment. The detector of X-rays: photographic plates, ionization chambers, scintillators, photomultipliers. Contrast Agents for X-Rays Imaging. Advanced applications.
- Nuclear Medicine
Introduction to physics of the nucleus. Properties of the nucleus. Stable and radioactive atoms. Radioactive decay. Alpha decay. Beta-decay. Radiopharmaceuticals. G-Camera, collimators. SPECT and PET. Block diagram of the experimental apparatus. Applications.
-Magnetic Resonance Imaging
Spin and nuclear magnetism. Nuclear magnetic resonance. Energy levels of a spin system in a magnetic field and transitions. The population of energy levels. Magnetization vector and Bloch equations. Precession motion of magnetization. Rotating reference system. T1 and T2 relaxation. The effect of a radiofrequency pulse on the magnetization: rotation of the magnetization. Soft and hard pulses. Free induction decay. Spin-echo. The introduction of the gradient to obtain spatial information. The imaging sequences. Block diagram of a Magnetic Resonance Tomograph. Diffusion-weighted techniques: the Stejskal and Tanner sequence. Diffusion tensor imaging. Contrast agents in MRI. Perfusion Imaging with intrinsic and exogenous contrast. Arterial Spin Labeling. Applications.
-Optical Imaging
Propagation of light in biological tissues: absorption and scattering. Law of Lambert-Beer. Absorption coefficient. Optical characteristics of biological tissues. The window of tissue transparency. Elastic scattering in the Rayleigh and Mie approximation. Fluorescence and bioluminescence emission.
Laboratory
Guided laboratory sessions will be provided in order to practice firsthand some of the techniques introduced in the theory.
Bibliography
Didactic methods
The course is divided into two parts: a theoretical part and a laboratory part. The theoretical part is carried out in the form of frontal lessons with the help of slides prepared. The laboratory part consists of practical sessions carried out using imaging instruments available the the university of Verona.
Learning assessment procedures
Students will be asked to read, understand and orally present a scientific article and the imaging techniques applied.
Evaluation criteria
The evaluation will be based on an oral presentation/discussion on the assigned scientific article, in which both the exposure and the interpretation of the methodologies employed and the results obtained in the article will be evaluated. This discussion may also include questions on the topics seen in the theory part.
Criteria for the composition of the final grade
The commission will assign a mark out of 30.
Exam language
Inglese