Studiare

In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.

Tipologia di Attività formativa D e F

Queste informazioni sono destinate esclusivamente agli studenti e alle studentesse già iscritti a questo corso.
Se sei un nuovo studente interessato all'immatricolazione, trovi le informazioni sul percorso di studi alla pagina del corso:

Laurea magistrale in Medical bioinformatics - Immatricolazione dal 2025/2026

Le attività formative di tipologia D sono a scelta dello studente, quelle di tipologia F sono ulteriori conoscenze utili all’inserimento nel mondo del lavoro (tirocini, competenze trasversali, project works, ecc.). In base al Regolamento Didattico del Corso, alcune attività possono essere scelte e inserite autonomamente a libretto, altre devono essere approvate da apposita commissione per verificarne la coerenza con il piano di studio. Le attività formative di tipologia D o F possono essere ricoperte dalle seguenti attività.

1. Insegnamenti impartiti presso l'Università di Verona

Comprendono gli insegnamenti sotto riportati e/o nel Catalogo degli insegnamenti (che può essere filtrato anche per lingua di erogazione tramite la Ricerca avanzata).

Modalità di inserimento a libretto: se l'insegnamento è compreso tra quelli sottoelencati, lo studente può inserirlo autonomamente durante il periodo in cui il piano di studi è aperto; in caso contrario, lo studente deve fare richiesta alla Segreteria, inviando a carriere.scienze@ateneo.univr.it il modulo nel periodo indicato.

2. Attestato o equipollenza linguistica CLA

Oltre a quelle richieste dal piano di studi, per gli immatricolati dall'A.A. 2021/2022 vengono riconosciute:

  • Lingua inglese: vengono riconosciuti 3 CFU per ogni livello di competenza superiore a quello richiesto dal corso di studio (se non già riconosciuto nel ciclo di studi precedente).
  • Altre lingue e italiano per stranieri: vengono riconosciuti 3 CFU per ogni livello di competenza a partire da A2 (se non già riconosciuto nel ciclo di studi precedente).

Tali cfu saranno riconosciuti, fino ad un massimo di 6 cfu complessivi, di tipologia F se il piano didattico lo consente, oppure di tipologia D. Ulteriori crediti a scelta per conoscenze linguistiche potranno essere riconosciuti solo se coerenti con il progetto formativo dello studente e se adeguatamente motivati.

Gli immatricolati fino all'A.A. 2020/2021 devono consultare le informazioni che si trovano qui.

Modalità di inserimento a librettorichiedere l’attestato o l'equipollenza al CLA e inviarlo alla Segreteria Studenti - Carriere per l’inserimento dell’esame in carriera, tramite mail: carriere.scienze@ateneo.univr.it

3. Competenze trasversali

Scopri i percorsi formativi promossi dal TALC - Teaching and learning center dell'Ateneo, destinati agli studenti regolarmente iscritti all'anno accademico di erogazione del corso https://talc.univr.it/it/competenze-trasversali

Modalità di inserimento a libretto: non è previsto l'inserimento dell'insegnamento nel piano di studi. Solo in seguito all'ottenimento dell'Open Badge verranno automaticamente convalidati i CFU a libretto. La registrazione dei CFU in carriera non è istantanea, ma ci saranno da attendere dei tempi tecnici.  

4. Periodo di stage/tirocinio

Oltre ai CFU previsti dal piano di studi (verificare attentamente quanto indicato sul Regolamento Didattico): qui informazioni su come attivare lo stage. 

Verificare nel regolamento quali attività possono essere di tipologia D e quali di tipologia F.

Insegnamenti e altre attività che si possono inserire autonomamente a libretto

 
Anno accademico:
1° periodo lezioni (1A) Dal 16/09/21 Al 30/10/21
anni Insegnamenti TAF Docente
Lab.: The fashion lab (1 cfu) D Caterina Fratea (Coordinatore)
Primo semestre Dal 04/10/21 Al 28/01/22
anni Insegnamenti TAF Docente
1° 2° Analisi di dati per scienze biomediche D Gloria Menegaz (Coordinatore)
1° 2° Introduzione alla robotica per studenti di materie scientifiche D Paolo Fiorini (Coordinatore)
1° 2° Linguaggio Programmazione Matlab-Simulink D Bogdan Mihai Maris (Coordinatore)
1° periodo lezioni (1B) Dal 05/11/21 Al 16/12/21
anni Insegnamenti TAF Docente
Lab.: The fashion lab (1 cfu) D Caterina Fratea (Coordinatore)
Secondo semestre Dal 07/03/22 Al 10/06/22
anni Insegnamenti TAF Docente
1° 2° Introduzione alla robotica per studenti di materie scientifiche D Paolo Fiorini (Coordinatore)
1° 2° Introduzione alla stampa 3D D Franco Fummi (Coordinatore)
1° 2° Progettazione di componenti hardware su FPGA D Franco Fummi (Coordinatore)
1° 2° Prototipizzazione con Arduino D Franco Fummi (Coordinatore)
1° 2° Tutela dei beni immateriali (SW e invenzione) tra diritto industriale e diritto d’autore D Roberto Giacobazzi (Coordinatore)
Elenco degli insegnamenti con periodo non assegnato
anni Insegnamenti TAF Docente
1° 2° Linguaggio programmazione Python D Giulio Mazzi (Coordinatore)

Codice insegnamento

4S010400

Coordinatore

Gloria Menegaz

Crediti

2

Offerto anche nei corsi:

Lingua di erogazione

Italiano

Settore Scientifico Disciplinare (SSD)

NN - -

Periodo

Primo semestre dal 4 ott 2021 al 28 gen 2022.

Obiettivi formativi

Il corso si propone di fornire alcune conoscenze di base di metodi e modelli di machine learning per l’analisi di dati biomedici con enfasi su aspetti legati all’explainability (XAI). Al termine del corso lo studente dovrà dimostrare di avere capacità di progettare e condurre uno studio di dati biomedici, dalla loro analisi all’applicazione di modelli finalizzati alla soluzione della domanda/tesi di partenza.

Programma

PROGRAMMA: Teoria:
1. Introduzione al panorama dell’analisi di dati biomedici
2. Visualizzazione e rappresentazioni di relazioni tramite le principali rappresentazioni grafiche
3. Modellazione di dati attraverso i principali modelli di predizione e classificazione utilizzati in ambito biomedico
4. Presentazione della soluzione attraverso la valutazione della performance del modello
5. Metodi di base di explainable artificial intelligence (XAI) per l’interpretazione dei risultati
Laboratorio:
Allo scopo di fornire agli studenti le basi pratiche per la gestione di semplici studi di dati biomedici, grande rilevanza verrà riservata alla parte di laboratorio in cui verrà presentato e affrontato uno specifico problema da risolvere. Durante questa fase, verrà innanzitutto presentato e commentato il codice che consente di risolvere il problema, e poi verranno proposti alcuni esercizi da risolvere nel tempo rimanente. Le esercitazioni saranno svolte in Python.

Bibliografia

Visualizza la bibliografia con Leganto, strumento che il Sistema Bibliotecario mette a disposizione per recuperare i testi in programma d'esame in modo semplice e innovativo.

Modalità d'esame

Colloquio per la discussione del progetto assegnato individualmente o ai gruppi in laboratorio.

Le/gli studentesse/studenti con disabilità o disturbi specifici di apprendimento (DSA), che intendano richiedere l'adattamento della prova d'esame, devono seguire le indicazioni riportate QUI