Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Academic calendar
The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.
Course calendar
The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..
Period | From | To |
---|---|---|
1° | Sep 30, 2002 | Nov 29, 2002 |
2° | Jan 13, 2003 | Mar 14, 2003 |
3° | Apr 7, 2003 | Jun 13, 2003 |
Session | From | To |
---|---|---|
First term | Dec 9, 2002 | Dec 20, 2002 |
Second term | Mar 24, 2003 | Apr 4, 2003 |
Third term | Jun 23, 2003 | Jul 4, 2003 |
First extra term | Jul 7, 2003 | Jul 18, 2003 |
Second extra term | Sep 1, 2003 | Sep 12, 2003 |
Third extra term | Sep 15, 2003 | Sep 26, 2003 |
Session | From | To |
---|---|---|
1 | Mar 17, 2004 | Mar 17, 2004 |
Period | From | To |
---|---|---|
Easter Holidays | Apr 18, 2003 | Apr 27, 2003 |
Exam calendar
Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.
Academic staff
Burattini Emilio

Martignano Maurizio
Piccinini Nicola

Rossato Rosalba

Scollo Giuseppe
Study Plan
The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
4° Year activated in the A.Y. 2005/2006
Modules | Credits | TAF | SSD |
---|
5° Year activated in the A.Y. 2006/2007
Modules | Credits | TAF | SSD |
---|
Legend | Type of training activity (TTA)
TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.
Complements of Mathematical Analysis (2005/2006)
Teaching code
4S00081
Teacher
Credits
5
Language
Italian
Scientific Disciplinary Sector (SSD)
MAT/05 - MATHEMATICAL ANALYSIS
Period
First four month term for the second and later years dal Oct 3, 2005 al Dec 2, 2005.
Location
VERONA
Learning outcomes
Diario del corso disponibile all'indirizzo profs.sci.univr.it/~orlandi/diariocomplementi.pdf
Nel corso verranno trattati alcuni degli argomenti proposti nel programma, scelti e calibrati in funzione delle esigenze formative dell'utenza.
Il corso prevede 40 ore di lezione frontale comprensive di esercitazioni e seminari.
Sintesi del programma: serie e trasformata di Fourier, trasformata di Laplace.
Elementi di analisi funzionale (spazi di Hilbert) e applicazioni alla risoluzione di equazioni differenziali ordinarie e alle derivate parziali. Funzioni di una variabile complessa. Equazioni della fisica matematica. Geometria differenziale di curve e superfici. Topologia algebrica.
Program
Complementi di Analisi 1. Serie di potenze. Serie di Fourier. Trasformata di Fourier, trasformata di Laplace e applicazioni alla risoluzione di equazioni differenziali ordinarie.
Elementi di Analisi Funzionale. Spazi metrici completi. Spazi di Banach e di Hilbert. Proprietà fondamentali degli spazi di Hilbert: teorema della proiezione ortogonale, teorema di rappresentazione di Riesz. Spazi di Hilbert separabili. Sistemi ortonormali completi (basi hilbertiane). Diseguaglianza di Bessel, identità di Parseval. Serie di Fourier e trasformata di Fourier in L^2. Applicazioni alla risoluzione di problemi di ottimizzazione, e di equazioni differenziali ordinarie e alle derivate parziali. Rappresentazione delle soluzioni. Approssimazione delle soluzioni: metodo di Ritz-Galerkin. Applicazioni a problemi di apprendimento e approssimazione di dati sparsi: spazi di Hilbert a nucleo riproducente e teorema di rappresentazione.
Elementi di Analisi Complessa. Funzioni derivabili in senso complesso (funzioni olomorfe). Condizioni di Cauchy-Riemann e loro interpretazione geometrica, fisica: mappe conformi, funzioni armoniche. Formula integrale di Cauchy. Sviluppabilità in serie di potenze (analiticità) delle funzioni olomorfe e applicazioni. Sviluppo in serie di Laurent e classificazione delle singolarità delle funzioni olomorfe. Il calcolo dei residui.
Elementi di equazioni alle derivate parziali. Equazioni lineari del secondo ordine: equazioni iperboliche, ellittiche, paraboliche. Le equazioni della fisica matematica. Equazione delle onde: equazione della corda vibrante, formula di d'Alembert di rappresentazione delle soluzioni, principio di Huygens, Metodo di Fourier di separazione delle variabili, oscillazioni di una membrana, principio di Duhamel. Equazione di Laplace e di Poisson. Equazione di Laplace nel cerchio: separazione di variabili e rappresentazione delle soluzioni, funzione di Green. Equazione del calore: separazione delle variabili e rappresentazione delle soluzioni, nucleo del calore.
Elementi di geometria differenziale. Curve spaziali: vettore tangente, normale, binormale. Curvatura, torsione. Formule di Frenet. Superfici spaziali: piano tangente, vettore normale. Prima forma fondamentale, metriche riemanniane. Seconda forma fondamentale, curvature. Theorema Egregium. Integrali superficiali e teorema di Stokes. Teorema di Gauss-Bonnet. Classificazione delle superfici spaziali chiuse. Campi di vettori e trasporto parallelo sulle superfici, derivata covariante. Curve geodetiche. Varietà differenziali e gruppi di Lie. Calcolo differenziale e integrale sulle varietà e in gruppi di matrici. Mappa esponenziale, geodetiche. Spazi fibrati. Gruppi di omotopia. Gruppi di omologia.
Author | Title | Publishing house | Year | ISBN | Notes |
---|---|---|---|---|---|
DISPENSE | Dispense fornite dal docente | 2015 |
Examination Methods
L'esame finale consiste nello svolgimento di un seminario su di un particolare argomento (a scelta dello studente) affrontato durante il corso.
Type D and Type F activities
Modules not yet included
Career prospects
Module/Programme news
News for students
There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details: only in this way will you be able to receive notification of all the notices from your teachers and your secretariat via email and soon also via the Univr app.