Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.

1° Year

ModulesCreditsTAFSSD
1 module between the following
6
B
ING-IND/25
1 module between the following
1 module between the following

2° Year  activated in the A.Y. 2022/2023

ModulesCreditsTAFSSD
1 module between the following
Training
3
F
-
Final exam
36
E
-
activated in the A.Y. 2022/2023
ModulesCreditsTAFSSD
1 module between the following
Training
3
F
-
Final exam
36
E
-
Modules Credits TAF SSD
Between the years: 1°- 2°
3
F
L-LIN/12
Between the years: 1°- 2°

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




S Placements in companies, public or private institutions and professional associations

Teaching code

4S00183

Coordinator

Nicola Vitulo

Credits

6

Also offered in courses:

  • Bioinformatics of the course Master's degree in Agri-Food Biotechnology

Language

Italian

Scientific Disciplinary Sector (SSD)

BIO/11 - MOLECULAR BIOLOGY

Period

Primo semestre dal Oct 4, 2021 al Jan 28, 2022.

Learning outcomes

Over the last decade the technological improvements of sequencing technologies (Next Generation Sequencing, NGS) had an enormous impact on the understanding of the genomes complexity and had provided interesting opportunities for the development of bioinformatics tools and programs for data analysis and management. The course aims to provide a general overview of the different computational methods applied in the field of NGS and omics science. These new technologies, which made possible to move from a reductionist to a holistic approach, have made it necessary to develop new strong interdisciplinary methods for data interpretation and integration. The course will provide students with basic knowledge on bioinformatics tools for the interpretation and integration of different omics data applied to the study of genomes, of gene expression and of metagenomic data for community analysis and microbial characterization. The course will also include a part performed in a computer lab where the computational programs necessary for the manipulation and interpretation of biological data will be illustrated.

Program

Introduction to next-generation sequencing data (NGS)
a. Bias and technology sequencing errors illuminate
b. FastQ format
c. Sequences quality check
d. Sequences pre-processing

2. NGS data alignment on a reference genome
a. Alignment of genomic and rna-seq sequences
b. SAM / BAM format

3. Analysis of transcriptomic data and RNA-seq
a. Transcripts reconstruction (genome-guided / denovo)
b. Gene quantification
c. Data normalization
d. Identification of differentially expressed genes

4. Genomes analysis
a. Genome assembly
b. Resequencing and identification of variants
c. Structural variants
d. VCF and gVCF file format

5. Computational methods for the analysis of metagenomic data
a. Metabarcoding
b. Whole Metagenome Sequencing
c. Taxonomic assignment
d. Metrics for the analysis of microbial complexity (alpha and beta diversity)

6. Introduction to system biology and omics data integration

Examination Methods

The exam consists of a written verification of the level of knowledge regarding the argument of the course. The exam consist of six open questions. The student need to demonstrate the understanding of the method and application of the major bioinformatic programs and approaches learned during the course.

Students with disabilities or specific learning disorders (SLD), who intend to request the adaptation of the exam, must follow the instructions given HERE