Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

Type D and Type F activities

This information is intended exclusively for students already enrolled in this course.
If you are a new student interested in enrolling, you can find information about the course of study on the course page:

Laurea in Economia e commercio - Enrollment from 2025/2026

Nei piani didattici di ciascun Corso di studio è previsto l’obbligo di conseguire un certo numero di crediti formativi mediante attività a scelta (chiamate anche "di tipologia D e F").

Oltre che in insegnamenti previsti nei piani didattici di altri corsi di studio e in certificazioni linguistiche o informatiche secondo quanto specificato nei regolamenti di ciascun corso, tali attività possono consistere anche in iniziative extracurriculari di contenuto vario, quali ad esempio la partecipazione a un seminario o a un ciclo di seminari, la frequenza di laboratori didattici, lo svolgimento di project work, stage aggiuntivo, eccetera.

Come per ogni altra attività a scelta, è necessario che anche queste non costituiscano un duplicato di conoscenze e competenze già acquisite dallo studente.

Quelle elencate in questa pagina sono le iniziative extracurriculari che sono state approvate dalla Commissione didattica e quindi consentono a chi vi partecipa l'acquisizione dei CFU specificati, alle condizioni riportate nelle pagine di dettaglio di ciascuna iniziativa.

Si ricorda in proposito che:
- tutte queste iniziative richiedono, per l'acquisizione dei relativi CFU, il superamento di una prova di verifica delle competenze acquisite, secondo le indicazioni contenute nella sezione "Modalità d'esame" della singola attività;
- lo studente è tenuto a inserire nel proprio piano degli studi l'attività prescelta e a iscriversi all'appello appositamente creato per la verbalizzazione, la cui data viene stabilita dal docente di riferimento e pubblicata nella sezione "Modalità d'esame" della singola attività.

COMPETENZE TRASVERSALI

Scopri i percorsi formativi promossi dal Teaching and learning centre dell'Ateneo, destinati agli studenti iscritti ai corsi di laurea, volti alla promozione delle competenze trasversali: https://talc.univr.it/it/competenze-trasversali

CONTAMINATION LAB

Il Contamination Lab Verona (CLab Verona) è un percorso esperienziale con moduli dedicati all'innovazione e alla cultura d'impresa che offre la possibilità di lavorare in team con studenti e studentesse di tutti i corsi di studio per risolvere sfide lanciate da aziende ed enti. Il percorso permette di ricevere 6 CFU in ambito D o F. Scopri le sfide: https://www.univr.it/it/clabverona

----------------------------------------------------------------------

ATTENZIONE: Per essere ammessi a sostenere una qualsiasi attività didattica, incluse quelle a scelta, è necessario essere iscritti all'anno di corso in cui essa viene offerta. Si raccomanda, pertanto, ai laureandi delle sessioni di dicembre e aprile di NON svolgere attività extracurriculari del nuovo anno accademico, cui loro non risultano iscritti, essendo tali sessioni di laurea con validità riferita all'anno accademico precedente. Quindi, per attività svolte in un anno accademico cui non si è iscritti, non si potrà dar luogo a riconoscimento di CFU.

Academic year:
Primo semestre L From 9/23/24 To 1/10/25
years Modules TAF Teacher
1° 2° 3° B-education: Sound ideas D Cristina Florio (Coordinator)
1° 2° 3° B-education: Sound ideas D Cristina Florio (Coordinator)
1° 2° 3° Ciclo tematico di conferenze “Italia nel mondo” - 2024/2025 D Riccardo Stacchezzini (Coordinator)
1° 2° 3° English for Business and Economics - Bachelor's Degrees D Marco Minozzo (Coordinator)
1° 2° 3° Ethical finance D Giorgio Mion (Coordinator)
1° 2° 3° Generative AI (Artificial Intelligence) for Business Communication D Massimo Melchiori (Coordinator)
Primo semestre LM From 9/30/24 To 12/23/24
years Modules TAF Teacher
1° 2° 3° Methods and tools for literature reviews D Cristina Florio (Coordinator)
Periodo generico From 10/1/24 To 5/31/25
years Modules TAF Teacher
1° 2° 3° Data Analysis Laboratory with R (Verona) D Marco Minozzo (Coordinator)
1° 2° 3° Data Visualization Laboratory D Marco Minozzo (Coordinator)
1° 2° 3° Python Laboratory D Marco Minozzo (Coordinator)
1° 2° 3° Data Science Laboratory with SAP D Marco Minozzo (Coordinator)
1° 2° 3° Advanced Excel Laboratory (Verona) D Marco Minozzo (Coordinator)
1° 2° 3° Excel Laboratory (Verona) D Marco Minozzo (Coordinator)
1° 2° 3° Methods and tools for empirical research in management D Nicola Cobelli (Coordinator)
1° 2° 3° Methods and tools for empirical research in management D Nicola Cobelli (Coordinator)
1° 2° 3° Plan your professional future D Paolo Roffia (Coordinator)
1° 2° 3° Plan your professional future D Paolo Roffia (Coordinator)
1° 2° 3° Marketing plan D Fabio Cassia (Coordinator)
1° 2° 3° Programming in Matlab D Marco Minozzo (Coordinator)
1° 2° 3° Programming in SAS D Marco Minozzo (Coordinator)
Secondo semestre LM From 2/17/25 To 5/23/25
years Modules TAF Teacher
1° 2° 3° The business consultant accountant D Riccardo Stacchezzini (Coordinator)
List of courses with unassigned period
years Modules TAF Teacher
1° 2° 3° French B1 D Not yet assigned
1° 2° 3° French B2 D Not yet assigned
1° 2° 3° English B2 D Not yet assigned
1° 2° 3° English C1 D Not yet assigned
1° 2° 3° Russian B1 D Not yet assigned
1° 2° 3° Russian B2 D Not yet assigned
1° 2° 3° Spanish B1 D Not yet assigned
1° 2° 3° Spanish B2 D Not yet assigned
1° 2° 3° German B1 D Not yet assigned
1° 2° 3° German B2 D Not yet assigned

Teaching code

4S009612

Coordinator

Marco Minozzo

Credits

3

Also offered in courses:

  • Python Laboratory of the course Bachelors' degree in Business Administration and Management
  • Python Laboratory of the course Master’s degree in Banking and Finance
  • Python Laboratory of the course Master’s degree in Economics and Data Analysis
  • Python Laboratory of the course Master’s degree in Business Administration and Corporate Law
  • Python Laboratory of the course Master’s degree in Marketing and Corporate Communication
  • Python Laboratory of the course Master’s degree in Economics
  • Python Laboratory of the course Bachelor's degree in Business Administration (Verona)
  • Python Laboratory of the course Bachelor's degree in Economics and Business (Verona)
  • Python Laboratory of the course Bachelor's degree in Economics and Business (Vicenza)
  • Python Laboratory of the course Bachelor's degree in Business Administration (Vicenza)
  • Python Laboratory of the course Master's degree in International Economics and Business Management
  • Python Laboratory of the course Master’s degree in International Economics and Business
  • Python Laboratory of the course Master’s degree in Management and business strategy
  • Python Laboratory of the course Bachelor's degree in Economics, Firms and International Markets
  • Python Laboratory of the course Bachelor's degree in Business Innovation and Economics

Language

Italian

Scientific Disciplinary Sector (SSD)

NN - -

Period

Not yet assigned

Learning outcomes

The course "Python Laboratory" is an optional "type f" activity, which allows to students to obtain 3 CFU, once a final examination is passed. In particular:

- The course is open to all CdL and CdLM students of the School of Economics and Management.

- Due to the COVID-19 emergency, this year lessons will be delivered online through Zoom meetings. The course has, approximately, 50 places.

- The course will take place in the first semester; there will be just one course.

- Requests for participation will be considered following the registration order considering that priority will be given to CdLM students, in particular to the students of the Master’s degree in Economics, of the Master’s degree in Economics and Data Analysis, and of the Master’s degree in Banking and Finance. Students are required to participate to the first lesson, or to send an email to the tutor to communicate their absence.

- Participation to the course does not require any particular background knowledge of the software Python.

- The frequency to the classes is compulsory. Students are required to attend at least 2/3 of the exercise lessons and tutorial activities in order to be admitted to the final evaluation.

The course consists of 18 hours of exercise lessons and tutorial activities (plus 2 hours of final examination).

The calendar of the course will be available as soon as possible.

Tutor: dott. Enrico De Vecchi


Registrations are open from the 13th of October 2020 to the 18th of October 2020.

Please, register through the elearning platform (Moodle). Students without a university IT account can ask to be registered by writing an email to the coordinator of the course. All other students must use the procedure on Moodle.

Program

Python is a widely used high-level programming language for general-purpose programming. It is an interpreted language, it has a design philosophy that emphasizes code readability and it has a syntax that allows programmers to express concepts in fewer lines of code than might be used in other languages, allowing new users to learn it in a few days. Python features a dynamic type system and automatic memory management and supports multiple programming paradigms, including object-oriented, imperative, functional programming, and procedural styles. It has a large and comprehensive standard library and it can easily be integrated with other programming languages, in particular with R. Python interpreters are available for many operating systems, allowing Python code to run on a wide variety of systems.

Python has gained wide popularity mainly for its use in the management and analysis of large data sets (data science). Today, R and Python are the two most widely used programming languages among data scientists. Both of them have rapidly advanced over the past few years. For these languages there exist many libraries for collecting, handling, visualizing and analyzing large data volumes and for implementing advanced machine learning models. Python is used in many organizations like NASA, Yahoo and Google. Python is open source and free software and has a community-based development model. Other information can be found at https://www.python.it/ and https://www.python.org/

The program of the course will start with an introduction to the software Python and its main functions. Then, some of the topics encountered in mathematical and statistic courses will be considered, as for example, matrix algebra, optimization and interpolation. Arguments will be presented mainly through examples. The course aims at improving the computational and programming skills of the students and at providing instruments that might be useful for the subsequent thesis work. The activity will allow students to improve the knowledge of a programming language that is highly requested in some sectors of the job market.

Reference texts
Author Title Publishing house Year ISBN Notes
Joel Grus Data Science con Python: dai fondamenti al Machine Learning (Edizione 1) Egea 2020 9788823822948
Dmitry Zinoviev Data Science con Python: dalle stringhe al machine learning, le tecniche essenziali per lavorare sui dati (Edizione 1) APOGEO 2017 9788850334148
Joel Grus Data Science from Scratch: First Principles with Python (Edizione 1) O'Reilly Media, Inc. 2015 9781491901410
Sarah Guido, Andreas C. Müller Introduction to Machine Learning with Python (Edizione 1) O'Reilly Media, Inc. 2016 9781449369880
Tony Gaddis Introduzione a Python (Edizione 1) Pearson Italia, Milano-Torino 2016 9788891900999
Paul Deitel, Harvey Deitel Introduzione a Python: per l'informatica e la data science (Edizione 1) Pearson Italia 2021 9788891915924
Samir Madhavan Mastering Python for Data Science (Edizione 1) Packt Publishing 2015 9781784390150
Ahmed Sherif Practical Business Intelligence (Edizione 1) Packt Publishing 2016 9781785885433
Toby Segaran Programming Collective Intelligence (Edizione 1) O'Reilly Media, Inc. 2007 9780596529321
Jake VanderPlas Python Data Science Handbook: Essential Tools for Working with Data (Edizione 1) O'Reilly Media, Inc. 2016 9781491912126
William Wesley McKinney Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython (Edizione 2) O'Reilly Media, Inc. 2017 9781491957653
Vahid Mirjalili, Sebastian Raschka Python Machine Learning (Edizione 2) Packt Publishing 2017 9781787125933
Chris Albon Python Machine Learning Cookbook (Edizione 1) O'Reilly Media, Inc. 2018 9781491989371
Allen B. Downey Think Stats: Exploratory Data Analysis (Edizione 2) O'Reilly Media, Inc. 2014 9781491907344
Richard Lawson Web Scraping with Python (Edizione 1) Packt Publishing 2015 9781782164364

Examination Methods

Students are required to attend at least 2/3 of the exercise lessons/tutorial activity in order to be admitted to the final evaluation. The final examination, which will take place online through a Zoom meeting, will consist in a written exam, followed by an oral examination, if necessary, on the use of the software Python. There will be just one date for the final examination.

Students with disabilities or specific learning disorders (SLD), who intend to request the adaptation of the exam, must follow the instructions given HERE