Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Type D and Type F activities
This information is intended exclusively for students already enrolled in this course.If you are a new student interested in enrolling, you can find information about the course of study on the course page:
Laurea in Economia e commercio - Enrollment from 2025/2026Nei piani didattici di ciascun Corso di studio è previsto l’obbligo di conseguire un certo numero di crediti formativi mediante attività a scelta (chiamate anche "di tipologia D e F").
Oltre che in insegnamenti previsti nei piani didattici di altri corsi di studio e in certificazioni linguistiche o informatiche secondo quanto specificato nei regolamenti di ciascun corso, tali attività possono consistere anche in iniziative extracurriculari di contenuto vario, quali ad esempio la partecipazione a un seminario o a un ciclo di seminari, la frequenza di laboratori didattici, lo svolgimento di project work, stage aggiuntivo, eccetera.
Come per ogni altra attività a scelta, è necessario che anche queste non costituiscano un duplicato di conoscenze e competenze già acquisite dallo studente.
Quelle elencate in questa pagina sono le iniziative extracurriculari che sono state approvate dalla Commissione didattica e quindi consentono a chi vi partecipa l'acquisizione dei CFU specificati, alle condizioni riportate nelle pagine di dettaglio di ciascuna iniziativa.
Si ricorda in proposito che:
- tutte queste iniziative richiedono, per l'acquisizione dei relativi CFU, il superamento di una prova di verifica delle competenze acquisite, secondo le indicazioni contenute nella sezione "Modalità d'esame" della singola attività;
- lo studente è tenuto a inserire nel proprio piano degli studi l'attività prescelta e a iscriversi all'appello appositamente creato per la verbalizzazione, la cui data viene stabilita dal docente di riferimento e pubblicata nella sezione "Modalità d'esame" della singola attività.
Scopri i percorsi formativi promossi dal Teaching and learning centre dell'Ateneo, destinati agli studenti iscritti ai corsi di laurea, volti alla promozione delle competenze trasversali: https://talc.univr.it/it/competenze-trasversali
CONTAMINATION LAB
Il Contamination Lab Verona (CLab Verona) è un percorso esperienziale con moduli dedicati all'innovazione e alla cultura d'impresa che offre la possibilità di lavorare in team con studenti e studentesse di tutti i corsi di studio per risolvere sfide lanciate da aziende ed enti. Il percorso permette di ricevere 6 CFU in ambito D o F. Scopri le sfide: https://www.univr.it/it/clabverona
----------------------------------------------------------------------
ATTENZIONE: Per essere ammessi a sostenere una qualsiasi attività didattica, incluse quelle a scelta, è necessario essere iscritti all'anno di corso in cui essa viene offerta. Si raccomanda, pertanto, ai laureandi delle sessioni di dicembre e aprile di NON svolgere attività extracurriculari del nuovo anno accademico, cui loro non risultano iscritti, essendo tali sessioni di laurea con validità riferita all'anno accademico precedente. Quindi, per attività svolte in un anno accademico cui non si è iscritti, non si potrà dar luogo a riconoscimento di CFU.
years | Modules | TAF | Teacher |
---|---|---|---|
1° 2° 3° | B-education: Sound ideas | D |
Cristina Florio
(Coordinator)
|
1° 2° 3° | B-education: Sound ideas | D |
Cristina Florio
(Coordinator)
|
1° 2° 3° | Ciclo tematico di conferenze “Italia nel mondo” - 2024/2025 | D |
Riccardo Stacchezzini
(Coordinator)
|
1° 2° 3° | English for Business and Economics - Bachelor's Degrees | D |
Marco Minozzo
(Coordinator)
|
1° 2° 3° | Ethical finance | D |
Giorgio Mion
(Coordinator)
|
1° 2° 3° | Generative AI (Artificial Intelligence) for Business Communication | D |
Massimo Melchiori
(Coordinator)
|
years | Modules | TAF | Teacher |
---|---|---|---|
1° 2° 3° | Methods and tools for literature reviews | D |
Cristina Florio
(Coordinator)
|
years | Modules | TAF | Teacher |
---|---|---|---|
1° 2° 3° | Data Analysis Laboratory with R (Verona) | D |
Marco Minozzo
(Coordinator)
|
1° 2° 3° | Data Visualization Laboratory | D |
Marco Minozzo
(Coordinator)
|
1° 2° 3° | Python Laboratory | D |
Marco Minozzo
(Coordinator)
|
1° 2° 3° | Data Science Laboratory with SAP | D |
Marco Minozzo
(Coordinator)
|
1° 2° 3° | Advanced Excel Laboratory (Verona) | D |
Marco Minozzo
(Coordinator)
|
1° 2° 3° | Excel Laboratory (Verona) | D |
Marco Minozzo
(Coordinator)
|
1° 2° 3° | Methods and tools for empirical research in management | D |
Nicola Cobelli
(Coordinator)
|
1° 2° 3° | Methods and tools for empirical research in management | D |
Nicola Cobelli
(Coordinator)
|
1° 2° 3° | Plan your professional future | D |
Paolo Roffia
(Coordinator)
|
1° 2° 3° | Plan your professional future | D |
Paolo Roffia
(Coordinator)
|
1° 2° 3° | Marketing plan | D |
Fabio Cassia
(Coordinator)
|
1° 2° 3° | Programming in Matlab | D |
Marco Minozzo
(Coordinator)
|
1° 2° 3° | Programming in SAS | D |
Marco Minozzo
(Coordinator)
|
years | Modules | TAF | Teacher |
---|---|---|---|
1° 2° 3° | The business consultant accountant | D |
Riccardo Stacchezzini
(Coordinator)
|
years | Modules | TAF | Teacher |
---|---|---|---|
1° 2° 3° | French B1 | D | Not yet assigned |
1° 2° 3° | French B2 | D | Not yet assigned |
1° 2° 3° | English B2 | D | Not yet assigned |
1° 2° 3° | English C1 | D | Not yet assigned |
1° 2° 3° | Russian B1 | D | Not yet assigned |
1° 2° 3° | Russian B2 | D | Not yet assigned |
1° 2° 3° | Spanish B1 | D | Not yet assigned |
1° 2° 3° | Spanish B2 | D | Not yet assigned |
1° 2° 3° | German B1 | D | Not yet assigned |
1° 2° 3° | German B2 | D | Not yet assigned |
Statistics (2024/2025)
Teaching code
4S00121
Academic staff
Coordinator
Credits
9
Language
Italian
Scientific Disciplinary Sector (SSD)
SECS-S/01 - STATISTICS
Period
Primo semestre L dal Sep 23, 2024 al Jan 10, 2025.
Courses Single
Authorized
Learning objectives
This module provides the basic techniques of descriptive statistics, probability and statistical inference to undergraduate students in economics and business studies. Prerequisite to the course is the mastering of a few basic mathematical concepts such as limit, derivative and integration at the level of an undergraduate first year introductory course in calculus. Overall, these techniques provide the necessary toolkit to carry out quantitative analyses in the processes related to the observation and understanding of collective phenomena. From a practical point of view, they are necessary for descriptive, interpretative and decision-making purposes and for conducting statistical studies related to economic and social phenomena. In addition to providing the necessary mathematical apparatus, the course also provides the conceptual tools for a critical evaluation of the presented methodologies. At the end of the course, students should be able to understand statistical information, carry out statistical analyses of economic and social phenomena, and to use basic statistical techniques and models for decision-making in business enterprise.
Prerequisites and basic notions
Students are supposed to have acquired mathematical knowledge of basic concepts such as limit, derivative and integral.
Program
a) Descriptive statistics
• Data collection and classification; data types.
• Frequency distributions; histograms and charts.
• Measures of central tendency; arithmetic mean, geometric mean and harmonic mean; median; quartiles and percentiles.
• Fixed-base indices and chain indices; Laspeyres and Paasche indices.
• Variability and measures of dispersion; variance and standard deviation; coefficient of variation.
• Moments; indices of skewness and kurtosis.
• Multivariate distributions; scatterplots; covariance; variance of the sum of more variables.
• Multivariate frequency distributions; conditional distributions; chi-squared index of dependence; index of association C; Simpson’s paradox.
• Method of least squares; least-squares regression line; Pearson’s coefficient of linear correlation r; Cauchy-Schwarz inequality; R-square coefficient; explained deviance and residual deviance.
b) Probability
• Random events; algebras and sigma-algebras; probability spaces and event trees; combinatorics.
• Conditional probability; independence; Bayes theorem.
• Discrete and continuous random variables; distribution function; expectation and variance; Markov and Chebyshev inequalities.
• Discrete uniform distributions; Bernoulli distribution; binomial distribution; Poisson distribution; geometric distribution.
• Continuous uniform distributions; normal distribution; exponential distribution.
• Multivariate discrete random variables; joint probability distribution; marginal and conditional probability distributions; independence; covariance; correlation coefficient.
• Linear combinations of random variables; average of independent random variables; sum of independent and Gaussian random variables.
• Weak law of large numbers; Bernoulli’s law of large numbers for relative frequencies; central limit theorem.
c) Inferential statistics
• Sample statistics and sampling distributions; chi-square distribution; Student-t distribution; Snedecors-F distribution.
• Point estimates and estimators; unbiasedness; efficiency; consistency; estimate of the mean, of a proportion and of a variance.
• Confidence intervals for a mean, for a proportion (large samples) and for a variance.
• Hypothesis testing; power and observed significance level; one and two tails tests for a mean, for a proportion (large samples) and for a variance; hypothesis testing for differences in two means, two proportions (large samples) and two variances.
Bibliography
Didactic methods
Detailed indications, regarding the use of the textbook, will be given during the course. Supporting material (written records of the lessons, exercises with solutions, past exam papers with solutions, etc.) is available on the E-learning platform of the University (Moodle).
Course load is equal to 84 hours. Exercise sessions are an integral part of the course and, together with the classes, they are essential to a proper understanding of the topics of the course. The working language is Italian. In addition to lessons and exercise hours, there will also be tutoring hours devoted to revision. More detailed information will be available during the course.
All lessons will be face-to-face and recorded.
Learning assessment procedures
The final exam consists of a written test (lasting about 2 hours) made up of a selection of exercises and, possibly, of multiple choice questions. For the written test, the Moodle's QUIZ tool might be used. During the exam, only a calculator can be used and no other material (books, notes, etc.) will be allowed. The written test will be followed by an oral test, which can only be accessed by students who have obtained at least a pass in the written test. To take the tests, students must present themselves with a university card or a suitable identification document.
Finally, we remind that, as far as the examination methods are concerned, there are no differences according to the number of lessons attended.
A noncompulsory intermediate test on the first part of the program (typically on descriptive statistics and a part of probability) is planned for the beginning of November 2024. The passing of this intermediate test can entail an increase of at most three points of the result obtained in the written test (if the written test is taken and passed in one of the two winter examination sessions).
Exam language
Italiano