Studiare

In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.

Tipologia di Attività formativa D e F

Le attività formative in ambito D o F comprendono gli insegnamenti impartiti presso l'Università di Verona o periodi di stage/tirocinio professionale.
Nella scelta delle attività di tipo D, gli studenti dovranno tener presente che in sede di approvazione si terrà conto della coerenza delle loro scelte con il progetto formativo del loro piano di studio e dell'adeguatezza delle motivazioni eventualmente fornite.

 
Anno accademico:
I semestre Dal 01/10/20 Al 29/01/21
anni Insegnamenti TAF Docente
1° 2° Linguaggio Programmazione Matlab-Simulink D Bogdan Mihai Maris (Coordinatore)
II semestre Dal 01/03/21 Al 11/06/21
anni Insegnamenti TAF Docente
1° 2° Introduzione alla stampa 3D D Franco Fummi (Coordinatore)
1° 2° Linguaggio programmazione Python D Vittoria Cozza (Coordinatore)
1° 2° Progettazione di componenti hardware su FPGA D Franco Fummi (Coordinatore)
1° 2° Prototipizzazione con Arduino D Franco Fummi (Coordinatore)
1° 2° Tutela dei beni immateriali (SW e invenzione) tra diritto industriale e diritto d’autore D Roberto Giacobazzi (Coordinatore)
Elenco degli insegnamenti con periodo non assegnato
anni Insegnamenti TAF Docente
1° 2° Lab.: The fashion lab (1 cfu) D Maria Caterina Baruffi (Coordinatore)
1° 2° Minicorso Blockchain D Nicola Fausto Spoto (Coordinatore)

Codice insegnamento

4S009001

Crediti

9

Coordinatore

Vittorio Murino

Lingua di erogazione

Inglese en

Settore Scientifico Disciplinare (SSD)

ING-INF/05 - SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI

L'insegnamento è organizzato come segue:

Teoria

Crediti

7

Periodo

II semestre

Laboratorio

Crediti

2

Periodo

II semestre

Obiettivi formativi

Il corso intende fornire i fondamenti teorici e descrivere le metodologie principali relative all’area di apprendimento automatico (machine learning), e più in generale all’area di Intelligenza Artificiale. In particolare, il corso si occuperà di descrivere i metodi di analisi, riconoscimento e classificazione automatica di dati di qualsiasi tipo, detti tipicamente pattern.

Queste discipline sono alla base, sono utilizzate, e spesso completano molte altre discipline ed aree applicative di larga diffusione, quali la visione computazionale, la robotica, l’elaborazione delle immagini, data mining, l’analisi ed interpretazione di dati medicali e biologici, la bioinformatica, biometria, videosorveglianza, il riconoscimento del parlato e del testo e numerose altre. Più precisamente, le metodologie che verranno introdotte nel corso sono spesso parte integrante delle aree applicative su citate, e ne costituiscono la parte “intelligente” con l’obiettivo finale di comprendere (classificare, riconoscere, analizzare) i dati provenienti dal processo di interesse (siano essi segnali, immagini, stringhe, categoriali, o di altro tipo).

A partire dalla tipologia di dati misurati, verrà considerata l’intera pipeline di analisi quali l’estrazione e selezione di caratteristiche; metodi di apprendimento automatico supervisionato e non supervisionato, tecniche di analisi parametriche e non, e i protocolli di validazione. Verranno infine analizzati in generale le recenti tecniche di apprendimento “profondo” (deep learning) con alcuni casi studio.

In conclusione, il corso si propone di fornire allo studente un insieme di fondamenti teorici e strumenti algoritmici per affrontare le problematiche che si possono incontrare in settori industriali strategici ed innovativi quali quelli che coinvolgono la robotica, i sistemi cyber fisici, l’elaborazione di grandi quantità di dati (big data), digital manufacturing, l’ispezione visuale di prodotti/processi di produzione e l’automazione in genere.

Programma

Il corso intende fornire i fondamenti teorici e metodi principali relativi all’analisi di dati, non necessariamente immagini, in breve verranno trattati teoria e metodi di classificazione statistica.
Questi temi sono propedeutici alle tecniche più recenti di Deep Learning.

Contenuti del corso
Introduzione: cos’è, a cosa serve, sistemi, applicazioni
Teoria della decisione di Bayes
Stima dei parametri e metodi non parametrici
Classificatori lineari, non lineari e funzioni discriminanti
Trasformazioni lineari e metodo di Fisher, estrazione e selezione delle feature, Principal Component Analysis
Misture di Gaussiane e algoritmo Expectation-Maximization
Metodi Kernel e Support Vector Machines
Hidden Markov Models
Reti neurali artificiali
Metodi di classificazione non supervisionata (clustering)
Combinazione di classificatori
Apprendimento profondo
Temi avanzati di metodi di apprendimento profondo

Modalità d'esame

Svolgimento di un progetto, con relazione ed esposizione orale.
2 persone max, 3 persone per progetti più complessi (da concordare col docente)

L’esposizione del progetto include una parte di domande volte alla valutazione della conoscenza dei contenuti del corso.

Le/gli studentesse/studenti con disabilità o disturbi specifici di apprendimento (DSA), che intendano richiedere l'adattamento della prova d'esame, devono seguire le indicazioni riportate QUI