Studiare
In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.
Tipologia di Attività formativa D e F
Le attività formative di tipologia D sono a scelta dello studente, quelle di tipologia F sono ulteriori conoscenze utili all’inserimento nel mondo del lavoro (tirocini, competenze trasversali, project works, ecc.). In base al Regolamento Didattico del Corso, alcune attività possono essere scelte e inserite autonomamente a libretto, altre devono essere approvate da apposita commissione per verificarne la coerenza con il piano di studio. Le attività formative di tipologia D o F possono essere ricoperte dalle seguenti attività.
1. Insegnamenti impartiti presso l'Università di Verona
Comprendono gli insegnamenti sotto riportati e/o nel Catalogo degli insegnamenti (che può essere filtrato anche per lingua di erogazione tramite la Ricerca avanzata).
Modalità di inserimento a libretto: se l'insegnamento è compreso tra quelli sottoelencati, lo studente può inserirlo autonomamente durante il periodo in cui il piano di studi è aperto; in caso contrario, lo studente deve fare richiesta alla Segreteria, inviando a carriere.scienze@ateneo.univr.it il modulo nel periodo indicato.
2. Attestato o equipollenza linguistica CLA
Oltre a quelle richieste dal piano di studi, per gli immatricolati dall'A.A. 2021/2022 vengono riconosciute:
- Lingua inglese: vengono riconosciuti 3 CFU per ogni livello di competenza superiore a quello richiesto dal corso di studio (se non già riconosciuto nel ciclo di studi precedente).
- Altre lingue e italiano per stranieri: vengono riconosciuti 3 CFU per ogni livello di competenza a partire da A2 (se non già riconosciuto nel ciclo di studi precedente).
Tali cfu saranno riconosciuti, fino ad un massimo di 6 cfu complessivi, di tipologia F se il piano didattico lo consente, oppure di tipologia D. Ulteriori crediti a scelta per conoscenze linguistiche potranno essere riconosciuti solo se coerenti con il progetto formativo dello studente e se adeguatamente motivati.
Gli immatricolati fino all'A.A. 2020/2021 devono consultare le informazioni che si trovano qui.
Modalità di inserimento a libretto: richiedere l’attestato o l'equipollenza al CLA e inviarlo alla Segreteria Studenti - Carriere per l’inserimento dell’esame in carriera, tramite mail: carriere.scienze@ateneo.univr.it
3. Competenze trasversali
Scopri i percorsi formativi promossi dal TALC - Teaching and learning center dell'Ateneo, destinati agli studenti regolarmente iscritti all'anno accademico di erogazione del corso https://talc.univr.it/it/competenze-trasversali
Modalità di inserimento a libretto: non è previsto l'inserimento dell'insegnamento nel piano di studi. Solo in seguito all'ottenimento dell'Open Badge verranno automaticamente convalidati i CFU a libretto. La registrazione dei CFU in carriera non è istantanea, ma ci saranno da attendere dei tempi tecnici.
4. CONTAMINATION LAB
Il Contamination Lab Verona (CLab Verona) è un percorso esperienziale con moduli dedicati all'innovazione e alla cultura d'impresa che offre la possibilità di lavorare in team con studenti e studentesse di tutti i corsi di studio per risolvere sfide lanciate da aziende ed enti. Il percorso permette di ricevere 6 CFU in ambito D o F. Scopri le sfide: https://www.univr.it/clabverona
ATTENZIONE: Per essere ammessi a sostenere una qualsiasi attività didattica, incluse quelle a scelta, è necessario essere iscritti all'anno di corso in cui essa viene offerta. Si raccomanda, pertanto, ai laureandi delle sessioni di dicembre e aprile di NON svolgere attività extracurriculari del nuovo anno accademico, cui loro non risultano iscritti, essendo tali sessioni di laurea con validità riferita all'anno accademico precedente. Quindi, per attività svolte in un anno accademico cui non si è iscritti, non si potrà dar luogo a riconoscimento di CFU.
5. Periodo di stage/tirocinio
Oltre ai CFU previsti dal piano di studi (verificare attentamente quanto indicato sul Regolamento Didattico): qui informazioni su come attivare lo stage.
Verificare nel regolamento quali attività possono essere di tipologia D e quali di tipologia F.
Insegnamenti e altre attività che si possono inserire autonomamente a libretto
anni | Insegnamenti | TAF | Docente |
---|---|---|---|
1° 2° | Introduction to docker & kubernetes | D |
Franco Fummi
(Coordinatore)
|
1° 2° | Introduzione alla meccanica quantistica per il quantum computing | D |
Claudia Daffara
(Coordinatore)
|
1° 2° | Introduzione alla programmazione di smart contract per Ethereum | D |
Sara Migliorini
(Coordinatore)
|
1° 2° | Introduzione alla robotica per studenti di materie scientifiche | D |
Andrea Calanca
(Coordinatore)
|
1° 2° | Progettazione di app web e mobile tramite react e react native | D |
Graziano Pravadelli
(Coordinatore)
|
1° 2° | Prototipizzazione con Arduino | D |
Franco Fummi
(Coordinatore)
|
1° 2° | Sviluppo firmware con protocollo bluetooth low energy (BLE) e sistema operativo Freertos | D |
Franco Fummi
(Coordinatore)
|
anni | Insegnamenti | TAF | Docente |
---|---|---|---|
1° 2° | Introduzione alla robotica per studenti di materie scientifiche | D |
Andrea Calanca
(Coordinatore)
|
1° 2° | Linguaggio Programmazione LaTeX | D |
Enrico Gregorio
(Coordinatore)
|
1° 2° | Linguaggio programmazione Python | D |
Carlo Combi
(Coordinatore)
|
1° 2° | Progettazione di componenti hardware su FPGA | D |
Franco Fummi
(Coordinatore)
|
1° 2° | Tutela dei beni immateriali (SW e invenzione) tra diritto industriale e diritto d’autore | D |
Mila Dalla Preda
(Coordinatore)
|
anni | Insegnamenti | TAF | Docente |
---|---|---|---|
1° 2° | Cooperative Game Theory in the (Deep) RL Era | D |
Alessandro Farinelli
(Coordinatore)
|
Mobile robotics (2023/2024)
Codice insegnamento
4S009023
Crediti
6
Lingua di erogazione
Inglese
Offerto anche nei corsi:
- AI in Robotics del corso Laurea magistrale in Artificial Intelligence [LM-18]
- AI in Robotics del corso Laurea magistrale in Artificial Intelligence [LM-18]
Settore Scientifico Disciplinare (SSD)
INF/01 - INFORMATICA
Corsi Singoli
Autorizzato
L'insegnamento è organizzato come segue:
Teoria
Laboratorio
Obiettivi di apprendimento
Il corso illustra le principali problematiche relative allo sviluppo di tecniche di controllo e pianificazione per piattaforme robotiche mobili. L'obiettivo è fornire alle studentesse ed agli studenti strumenti per ideare, applicare e valutare algoritmi che permettano a piattaforme robotiche mobili di interagire con l'ambiente circostante eseguendo compiti complessi con un elevato livello di autonoma. Al termine del corso le studentesse e gli studenti dovranno dimostrare di comprendere i concetti fondamentali relativi alla localizzazione, pianificazione delle traiettorie, pianificazione di compiti complessi, processi decisionali che considerano l'incertezza e apprendimento automatico, nel contesto delle piattaforme robotiche mobili. Le studentesse e gli studenti, dovranno dimostrare di conoscere, ed essere in grado di usare i principali strumenti per lo sviluppo di applicazioni per piattaforme robotiche mobili, e di essere in grado di definire le specifiche tecniche per la progettazione ed integrazione di moduli software per piattaforme robotiche mobili. Le studentesse e gli studenti dovranno inoltre essere in grado di confrontarsi con figure professionali per progettare soluzioni per il controllo di alto livello di piattaforme robotiche mobili e avere la capacità di proseguire gli studi in modo autonomo per seguire l'evoluzione tecnica nell'ambito della robotica mobile sviluppando approcci innovativi che migliorino lo stato dell’arte.
Prerequisiti e nozioni di base
Nessun requisito specifico.
Programma
– Cinematica per robot mobili (e.g., vincoli di non olonomia, modello uniciclo)
– Navigazione per robot mobili: localizzazione e mapping (e.g., Extended Kalman Filter SLAM), pianificazione delle traiettorie (e.g., funzioni di navigazione).
– Processi decisionali che considerano l'incertezza (e.g., Processi Decisionali di Markov).
– Apprendimento per rinforzo per piattaforme robotiche mobili (e.g., approcci basati sulla costruzione di un modello ed approcci senza costruzione di un modello, Deep RL).
– Laboratorio: implementazione di comportamenti autonomi per piattaforme robotiche mobili usando ambienti di sviluppo allo stato dell’arte (e.g., ROS2), ambienti di simulazione per l’analisi sperimentale (e.g., Unity), validazione su semplici basi robotiche mobili (e.g., turtlebot3)
Bibliografia
Modalità didattiche
Lezioni frontali in aule didattiche e in laboratorio con piattaforme robotiche mobili. Verranno fornite le slide usate durante le lezioni ed altro materiale (e.g., accesso a codice ed a piattaforme robotiche mobili).
Modalità di verifica dell'apprendimento
L'esame è costituito da una prova orale incentrata sulle attività di laboratorio e da una seconda prova che può essere scelta tra due opzioni: i) un progetto incentrato sull'implementazione di alcune delle tecniche studiate durante il corso; ii) una prova orale incentrata sulle tematiche studiate durante il corso.
Criteri di valutazione
Per superare l'esame gli studenti dovranno dimostrare di:
- aver compreso i principi alla base della programmazione per robot mobili
- essere in grado di esporre argomentazioni sulle tematiche del corso in modo preciso e organico senza divagazioni
- saper applicare le conoscenze acquisite per risolvere problemi applicativi presentati sotto forma di esercizi, domande e progetti.
Criteri di composizione del voto finale
Il voto finale sarà ottenuto dalla media dei voti delle due prove.
Lingua dell'esame
English