Studiare
In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.
Prova Finale
Scadenziari e adempimenti amministrativi
Per gli scadenziari, gli adempimenti amministrativi e gli avvisi sulle sessioni di laurea, si rimanda al servizio Sessioni di laurea - Scienze e Ingegneria.
Necessità di attivare un tirocinio per tesi
Per stage finalizzati alla stesura della tesi di laurea, non è sempre necessaria l'attivazione di un tirocinio tramite l'Ufficio Stage. Per maggiori informazioni, consultare il documento dedicato, che si trova nella sezione "Documenti" del servizio dedicato agli stage e ai tirocini.
Regolamento della prova finale
La prova finale consiste nella preparazione e discussione di un elaborato scritto in lingua Inglese (tesi di laurea) relativo all'approfondimento di un tema scientifico affrontato nel corso di studi, ovvero relativo all'analisi e soluzione di un caso di studio (teorico e/o direttamente derivato da un problema di carattere industriale), ovvero relativo ad un lavoro di tipo sperimentale, eventualmente sviluppato all'interno di un percorso di tirocinio, ovvero frutto di un lavoro autonomo ed originale di ricerca, con collegati aspetti di formalizzazione matematica, progettazione informatica e realizzazione business oriented. Tali attività saranno svolte sotto la guida di un relatore presso una struttura universitaria, o anche esterna all'Università di Verona, tanto in Italia, quanto all'estero, purché riconosciuta e accettata a tal fine in accordo con il Regolamento didattico del corso di Laurea Magistrale in Data Science. La commissione preposta alla valutazione della prova finale (esposizione in lingua Inglese della tesi di laurea) è chiamata ad esprimere una valutazione che tenga conto dell'intero percorso di studi, valutando attentamente il grado di coerenza tra obbiettivi formativi e obbiettivi professionali, nonché la capacità di elaborazione intellettuale autonoma, il senso critico, le doti di comunicazione e la maturità culturale generale, in relazione agli obiettivi del corso di Laurea Magistrale in Data Science, e particolare, in relazione alle tematiche caratterizzanti la tesi di laurea, del candidato.
Gli studenti possono sostenere la prova finale solamente dopo aver assolto a tutti gli altri obblighi formativi previsti dal loro piano di studi ed agli adempimenti presso gli uffici amministrativi in conformità con i termini indicati nel manifesto generale degli studi.
La valutazione finale e la proclamazione verranno effettuate dalla commissione di esame finale nominata dal presidente del collegio didattico e composta da un presidente e almeno da altri quattro commissari scelti tra i docenti dell'Ateneo.
Il materiale presentato per la prova finale viene valutato dalla Commissione Valutazione Tesi, composta da tre docenti, tra cui possibilmente il relatore, e nominata dal presidente del collegio didattico. La commissione valutazione tesi formula una valutazione del lavoro svolto, e la trasmette alla commissione d'esame finale che esprimerà il giudizio finale. Il collegio didattico disciplina le procedure delle commissioni valutazione tesi, delle commissioni d'esame finale e dell'attribuzione del punteggio della prova finale mediante apposito regolamento deliberato dal collegio didattico.
Documenti
Titolo | Info File |
---|---|
![]() |
pdf, it, 387 KB, 4/27/22 |
Elenco delle proposte di tesi
Proposte di tesi | Area di ricerca |
---|---|
Domain Adaptation | Computer Science and Informatics: Informatics and information systems, computer science, scientific computing, intelligent systems - Computer graphics, computer vision, multi media, computer games |
Domain Adaptation | Computer Science and Informatics: Informatics and information systems, computer science, scientific computing, intelligent systems - Machine learning, statistical data processing and applications using signal processing (e.g. speech, image, video) |
Domain Adaptation | Computing Methodologies - IMAGE PROCESSING AND COMPUTER VISION |
Domain Adaptation | Computing methodologies - Machine learning |