Studiare
In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.
Calendario accademico
Il calendario accademico riporta le scadenze, gli adempimenti e i periodi rilevanti per la componente studentesca, personale docente e personale dell'Università. Sono inoltre indicate le festività e le chiusure ufficiali dell'Ateneo.
L’anno accademico inizia il 1° ottobre e termina il 30 settembre dell'anno successivo.
Calendario didattico
Il calendario didattico indica i periodi di svolgimento delle attività formative, di sessioni d'esami, di laurea e di chiusura per le festività.
Periodo | Dal | Al |
---|---|---|
Primo semestre | 3-ott-2022 | 27-gen-2023 |
Secondo semestre | 6-mar-2023 | 16-giu-2023 |
Sessione | Dal | Al |
---|---|---|
Sessione invernale d'esame | 30-gen-2023 | 3-mar-2023 |
Sessione estiva d'esame | 19-giu-2023 | 31-lug-2023 |
Sessione autunnale d'esame | 4-set-2023 | 29-set-2023 |
Sessione | Dal | Al |
---|---|---|
Sessione estiva di laurea | 19-lug-2023 | 19-lug-2023 |
Sessione autunnale di laurea | 18-ott-2023 | 18-ott-2023 |
Sessione invernale di laurea | 11-mar-2024 | 11-mar-2024 |
Periodo | Dal | Al |
---|---|---|
Ponte Festa di tutti i Santi | 31-ott-2022 | 1-nov-2022 |
Ponte dell'Immacolata Concezione | 8-dic-2022 | 9-dic-2022 |
Vacanze natalizie | 23-dic-2022 | 8-gen-2023 |
Vacanze di Pasqua | 7-apr-2023 | 10-apr-2023 |
Festa della Liberazione | 24-apr-2023 | 25-apr-2023 |
Festa dei Lavoratori | 1-mag-2023 | 1-mag-2023 |
Festa del Santo Patrono | 21-mag-2023 | 21-mag-2023 |
Festa della Repubblica | 2-giu-2023 | 2-giu-2023 |
Chiusura estiva | 14-ago-2023 | 19-ago-2023 |
Calendario esami
Gli appelli d'esame sono gestiti dalla Unità Operativa Segreteria Corsi di Studio Scienze e Ingegneria.
Per consultazione e iscrizione agli appelli d'esame visita il sistema ESSE3.
Per problemi inerenti allo smarrimento della password di accesso ai servizi on-line si prega di rivolgersi al supporto informatico della Scuola o al servizio recupero credenziali
Docenti
Piano Didattico
Il piano didattico è l'elenco degli insegnamenti e delle altre attività formative che devono essere sostenute nel corso della propria carriera universitaria.
Selezionare il piano didattico in base all'anno accademico di iscrizione.
1° Anno
Insegnamenti | Crediti | TAF | SSD |
---|
2° Anno Attivato nell'A.A. 2023/2024
Insegnamenti | Crediti | TAF | SSD |
---|
Insegnamenti | Crediti | TAF | SSD |
---|
Insegnamenti | Crediti | TAF | SSD |
---|
Insegnamenti | Crediti | TAF | SSD |
---|
Legenda | Tipo Attività Formativa (TAF)
TAF (Tipologia Attività Formativa) Tutti gli insegnamenti e le attività sono classificate in diversi tipi di attività formativa, indicati da una lettera.
Tipologia di Attività formativa D e F
Le attività formative di tipologia D sono a scelta dello studente, quelle di tipologia F sono ulteriori conoscenze utili all’inserimento nel mondo del lavoro (tirocini, competenze trasversali, project works, ecc.). In base al Regolamento Didattico del Corso, alcune attività possono essere scelte e inserite autonomamente a libretto, altre devono essere approvate da apposita commissione per verificarne la coerenza con il piano di studio. Le attività formative di tipologia D o F possono essere ricoperte dalle seguenti attività.
1. Insegnamenti impartiti presso l'Università di Verona
Comprendono gli insegnamenti sotto riportati e/o nel Catalogo degli insegnamenti (che può essere filtrato anche per lingua di erogazione tramite la Ricerca avanzata).
Modalità di inserimento a libretto: se l'insegnamento è compreso tra quelli sottoelencati, lo studente può inserirlo autonomamente durante il periodo in cui il piano di studi è aperto; in caso contrario, lo studente deve fare richiesta alla Segreteria, inviando a carriere.scienze@ateneo.univr.it il modulo nel periodo indicato.
2. Attestato o equipollenza linguistica CLA
Oltre a quelle richieste dal piano di studi, per gli immatricolati dall'A.A. 2021/2022 vengono riconosciute:
- Lingua inglese: vengono riconosciuti 3 CFU per ogni livello di competenza superiore a quello richiesto dal corso di studio (se non già riconosciuto nel ciclo di studi precedente).
- Altre lingue e italiano per stranieri: vengono riconosciuti 3 CFU per ogni livello di competenza a partire da A2 (se non già riconosciuto nel ciclo di studi precedente).
Tali cfu saranno riconosciuti, fino ad un massimo di 6 cfu complessivi, di tipologia F se il piano didattico lo consente, oppure di tipologia D. Ulteriori crediti a scelta per conoscenze linguistiche potranno essere riconosciuti solo se coerenti con il progetto formativo dello studente e se adeguatamente motivati.
Gli immatricolati fino all'A.A. 2020/2021 devono consultare le informazioni che si trovano qui.
Modalità di inserimento a libretto: richiedere l’attestato o l'equipollenza al CLA e inviarlo alla Segreteria Studenti - Carriere per l’inserimento dell’esame in carriera, tramite mail: carriere.scienze@ateneo.univr.it
3. Competenze trasversali
Scopri i percorsi formativi promossi dal TALC - Teaching and learning center dell'Ateneo, destinati agli studenti regolarmente iscritti all'anno accademico di erogazione del corso https://talc.univr.it/it/competenze-trasversali
Modalità di inserimento a libretto: non è previsto l'inserimento dell'insegnamento nel piano di studi. Solo in seguito all'ottenimento dell'Open Badge verranno automaticamente convalidati i CFU a libretto. La registrazione dei CFU in carriera non è istantanea, ma ci saranno da attendere dei tempi tecnici.
4. CONTAMINATION LAB
Il Contamination Lab Verona (CLab Verona) è un percorso esperienziale con moduli dedicati all'innovazione e alla cultura d'impresa che offre la possibilità di lavorare in team con studenti e studentesse di tutti i corsi di studio per risolvere sfide lanciate da aziende ed enti. Il percorso permette di ricevere 6 CFU in ambito D o F. Scopri le sfide: https://www.univr.it/clabverona
ATTENZIONE: Per essere ammessi a sostenere una qualsiasi attività didattica, incluse quelle a scelta, è necessario essere iscritti all'anno di corso in cui essa viene offerta. Si raccomanda, pertanto, ai laureandi delle sessioni di dicembre e aprile di NON svolgere attività extracurriculari del nuovo anno accademico, cui loro non risultano iscritti, essendo tali sessioni di laurea con validità riferita all'anno accademico precedente. Quindi, per attività svolte in un anno accademico cui non si è iscritti, non si potrà dar luogo a riconoscimento di CFU.
5. Periodo di stage/tirocinio
Oltre ai CFU previsti dal piano di studi (verificare attentamente quanto indicato sul Regolamento Didattico): qui informazioni su come attivare lo stage.
Insegnamenti e altre attività che si possono inserire autonomamente a libretto
anni | Insegnamenti | TAF | Docente |
---|---|---|---|
1° 2° | Mathematics mini courses |
Paolo Dai Pra
(Coordinatore)
|
Probability for data science (2022/2023)
Codice insegnamento
4S009077
Docenti
Coordinatore
Crediti
12
Lingua di erogazione
Inglese
Settore Scientifico Disciplinare (SSD)
MAT/06 - PROBABILITÀ E STATISTICA MATEMATICA
Periodo
Primo semestre dal 3-ott-2022 al 27-gen-2023.
Obiettivi di apprendimento
Il corso fornirà un'introduzione auto-contenuta e matematicamente rigorosa alle moderne tecniche di analisi dei dati e modellizzazione dei fenomeni aleatori, con particolare attenzione alle basi teoriche, proprie della teoria delle probabilità, necessarie per sviluppare soluzioni efficaci alle sfide caratterizzanti ambiti eterogenei, e.g., finanza, fault-detection, innovation forecasting, energy prediction, etc., tipici della Industria 4.0, con particolare riferimento alle sfide poste in ambito big data analytics. La presentazione di concetti, problemi e relative soluzioni teorico/pratiche, verrà orientata alle applicazioni, anche facendo uso di software statistico specifico (e.g.: Matlab, R, KNIME, etc.) sempre mantenendo un elevato livello di rigore matematico. All'interno del corso verranno ricordate le nozioni di base della teoria della Probabilità moderna (e.g.: variabili casuali, le loro distribuzioni e principali proprietà statistiche, teoremi di convergenza e applicazioni), con particolare attenzione ai processi stocastici fondamentali (e.g. : catene di Markov, processi di nascita e morte, teoria della code con applicazioni del mondo reale) e le loro applicazioni all'interno di scenari del mondo reale e caratterizzati dalla presenza di big data e serie temporali correlate. Al termine del corso lo studente dovrà dimostrare di: ●_x0001_conoscere le basi formali della teoria della probabilità ●_x0001_saper utilizzare i concetti di variabile aleatoria (tanto in ambito discreto che continuo) ●_x0001_saper sviluppare modelli basati su modelli probabilistici noti, e.g., v.a. binomiali, di Poisson, Gaussiane, misture di Gaussiane, etc. ●_x0001_aver compreso e saper utilizzare la teoria di base dei processi stocastici, con particolare riferimento alla teoria delle catene di Markov (a tempo discreto e continuo), ai processi di nascita e morte ed applicazioni correlate ●_x0001_conoscere e saper utilizzare i concetti di base in ambito statistico descrittivo ed inferenziale
Prerequisiti e nozioni di base
Analisi matematica ed algebra lineare
Programma
1. Probabilità, condizionamento e indipendenza.
2. Variabili aleatorie e distribuzioni. Distribuzioni discrete. Valor medio e varianza. Distribuzioni continue.
3. Vettori aleatori. Indipendenza di variabili aleatorie.
Covarianza e correlazione.
4. Teoremi limite: legge dei grandi numeri e teorema del limite centrale. Approssimazione normale.
5. Vettori aleatori normali.
6. Catene di Markov a tempo discreto. Metodi Markov Chain Monte Carlo.
7. Processi di Poisson ed elementi di teoria delle code. Catene di Markov a tempo continuo.
8. Introduzione alle reti aleatorie.
Bibliografia
Modalità didattiche
Tutti gli argomenti saranno illustrati a lezione. Materiale addizionale, quale esercizi settimanali, appunti ed ulteriori referenze, saranno disponibile alla pagina Moodle del corso.
Saranno specificamente tutelati gli studenti e le studentesse in situazioni di limitazione agli spostamenti per effetto di disposizioni nazionali di contrasto al COVID o in situazioni particolari di fragilità. In questi casi gli studenti e le studentesse sono invitati a contattare direttamente il docente per organizzare le modalità di recupero più opportune.
Modalità di verifica dell'apprendimento
L'esame è valutato fino ad un massimo di 30 punti ed è composto da due prove: uno scritto ed un orale.
Prova scritta. Consiste nella risoluzione di alcuni esercizi. La prova scritta può essere passata superando due prove intermedie durante il semestre o superando un appello ordinario durante una sessione d'esame.
Prova orale. Può essere sostenuta una volta superata la prova scritta (voto minimo: 15/30) e aumenta il voto della prova scritta fino ad un massimo di 3 punti. A scelta della/o studentessa/studente, la prova orale può essere svolta secondo una delle modalità seguenti:
--esame orale, durante il quale si deve dimostrare la propria conoscenza del materiale del corso ed essere in grado di discutere gli argomenti trattati a lezione;
--presentazione di un progetto, durante il quale la/o studentessa/studente deve discutere un codice per una simulazione, da lei/lui implementato, per risolvere un problema relativo ai contenuti del corso.
Per superare l'esame si deve ottenere una votazione di almeno 18/30.
Criteri di valutazione
La/o studentessa/studente deve dimostrare di conoscere i concetti base della Probabilità e della teoria delle catene di Markov, di saper applicare la teoria alla risoluzione di problemi e di essere in grado di risolvere esercizi di difficoltà appropriata.
Lingua dell'esame
English
Prospettive
Avvisi degli insegnamenti e del corso di studio
Per la comunità studentesca
Se sei già iscritta/o a un corso di studio, puoi consultare tutti gli avvisi relativi al tuo corso di studi nella tua area riservata MyUnivr.
In questo portale potrai visualizzare informazioni, risorse e servizi utili che riguardano la tua carriera universitaria (libretto online, gestione della carriera Esse3, corsi e-learning, email istituzionale, modulistica di segreteria, procedure amministrative, ecc.).
Entra in MyUnivr con le tue credenziali GIA: solo così potrai ricevere notifica di tutti gli avvisi dei tuoi docenti e della tua segreteria via mail e anche tramite l'app Univr.
Prova Finale
Scadenziari e adempimenti amministrativi
Per gli scadenziari, gli adempimenti amministrativi e gli avvisi sulle sessioni di laurea, si rimanda al servizio Sessioni di laurea - Scienze e Ingegneria.
Necessità di attivare un tirocinio per tesi
Per stage finalizzati alla stesura della tesi di laurea, non è sempre necessaria l'attivazione di un tirocinio tramite l'Ufficio Stage. Per maggiori informazioni, consultare il documento dedicato, che si trova nella sezione "Documenti" del servizio dedicato agli stage e ai tirocini.
Regolamento della prova finale
La prova finale consiste nella preparazione e discussione di un elaborato scritto in lingua Inglese (tesi di laurea) relativo all'approfondimento di un tema scientifico affrontato nel corso di studi, ovvero relativo all'analisi e soluzione di un caso di studio (teorico e/o direttamente derivato da un problema di carattere industriale), ovvero relativo ad un lavoro di tipo sperimentale, eventualmente sviluppato all'interno di un percorso di tirocinio, ovvero frutto di un lavoro autonomo ed originale di ricerca, con collegati aspetti di formalizzazione matematica, progettazione informatica e realizzazione business oriented. Tali attività saranno svolte sotto la guida di un relatore presso una struttura universitaria, o anche esterna all'Università di Verona, tanto in Italia, quanto all'estero, purché riconosciuta e accettata a tal fine in accordo con il Regolamento didattico del corso di Laurea Magistrale in Data Science. La commissione preposta alla valutazione della prova finale (esposizione in lingua Inglese della tesi di laurea) è chiamata ad esprimere una valutazione che tenga conto dell'intero percorso di studi, valutando attentamente il grado di coerenza tra obbiettivi formativi e obbiettivi professionali, nonché la capacità di elaborazione intellettuale autonoma, il senso critico, le doti di comunicazione e la maturità culturale generale, in relazione agli obiettivi del corso di Laurea Magistrale in Data Science, e particolare, in relazione alle tematiche caratterizzanti la tesi di laurea, del candidato.
Gli studenti possono sostenere la prova finale solamente dopo aver assolto a tutti gli altri obblighi formativi previsti dal loro piano di studi ed agli adempimenti presso gli uffici amministrativi in conformità con i termini indicati nel manifesto generale degli studi.
La valutazione finale e la proclamazione verranno effettuate dalla commissione di esame finale nominata dal presidente del collegio didattico e composta da un presidente e almeno da altri quattro commissari scelti tra i docenti dell'Ateneo.
Il materiale presentato per la prova finale viene valutato dalla Commissione Valutazione Tesi, composta da tre docenti, tra cui possibilmente il relatore, e nominata dal presidente del collegio didattico. La commissione valutazione tesi formula una valutazione del lavoro svolto, e la trasmette alla commissione d'esame finale che esprimerà il giudizio finale. Il collegio didattico disciplina le procedure delle commissioni valutazione tesi, delle commissioni d'esame finale e dell'attribuzione del punteggio della prova finale mediante apposito regolamento deliberato dal collegio didattico.
Documenti
Titolo | Info File |
---|---|
Regolamento esame finale | Final exam regulation | pdf, it, 387 KB, 27/04/22 |
Elenco delle proposte di tesi
Proposte di tesi | Area di ricerca |
---|---|
Domain Adaptation | Computer Science and Informatics: Informatics and information systems, computer science, scientific computing, intelligent systems - Computer graphics, computer vision, multi media, computer games |
Domain Adaptation | Computer Science and Informatics: Informatics and information systems, computer science, scientific computing, intelligent systems - Machine learning, statistical data processing and applications using signal processing (e.g. speech, image, video) |
Domain Adaptation | Computing Methodologies - IMAGE PROCESSING AND COMPUTER VISION |
Domain Adaptation | Computing methodologies - Machine learning |
Gestione carriere
Area riservata studenti
Erasmus+ e altre esperienze all’estero
Modalità e sedi di frequenza
Come riportato nel Regolamento Didattico, la frequenza al corso di studio non è obbligatoria.
È consentita l'iscrizione a tempo parziale. Per saperne di più consulta la pagina Possibilità di iscrizione Part time.
Le attività didattiche del corso di studi si svolgono negli spazi dell’area di Scienze e Ingegneria che è composta dagli edifici di Ca’ Vignal 1, Ca’ Vignal 2, Ca’ Vignal 3 e Piramide, siti nel polo di Borgo Roma.
Le lezioni frontali si tengono nelle aule di Ca’ Vignal 1, Ca’ Vignal 2, Ca’ Vignal 3 mentre le esercitazioni pratiche nei laboratori didattici dedicati alle varie attività.
Caratteristiche dei laboratori didattici a disposizione degli studenti
- Laboratorio Alfa
- 50 PC disposti in 13 file di tavoli
- 1 PC per docente collegato a un videoproiettore 8K Ultra Alta Definizione per le esercitazioni
- Configurazione PC: Intel Core i3-7100, 8GB RAM, 250GB SSD, monitor 24", Linux Ubuntu 24.04
- Tutti i PC sono accessibili da persone in sedia a rotelle
- Laboratorio Delta
- 120 PC in 15 file di tavoli
- 1 PC per docente collegato a due videoproiettori 4K per le esercitazioni
- Configurazione PC: Intel Core i3-7100, 8GB RAM, 250GB SSD, monitor 24", Linux Ubuntu 24.04
- Un PC è su un tavolo ad altezza variabile per garantire un accesso semplificato a persone in sedia a rotelle
- Laboratorio Gamma (Cyberfisico)
- 19 PC in 3 file di tavoli
- 1 PC per docente con videoproiettore 4K
- Configurazione PC: Intel Core i7-13700, 16GB RAM, 512GB SSD, monitor 24", Linux Ubuntu 24.04
- Laboratorio VirtualLab
- Accessibile via web: https://virtualab.univr.it
- Emula i PC dei laboratori Alfa/Delta/Gamma
- Usabile dalla rete universitaria o tramite VPN dall'esterno
- Permette agli studenti di lavorare da remoto (es. biblioteca, casa) con le stesse funzionalità dei PC di laboratorio
Caratteristiche comuni:
- Tutti i PC hanno la stessa suite di programmi usati negli insegnamenti di laboratorio
- Ogni studente ha uno spazio disco personale di XXX GB, accessibile da qualsiasi PC
- Gli studenti quindi possono usare qualsiasi PC in qualsiasi laboratorio senza limitazioni ritrovando sempre i documenti salvati precedentemente
Questa organizzazione dei laboratori offre flessibilità e continuità nel lavoro degli studenti, consentendo l'accesso ai propri documenti e all'ambiente di lavoro da qualsiasi postazione o da remoto.