Compilatori

1) Eliminare la ricorsione a sinistra nella seguente grammatica:

$$A \rightarrow A + B \mid B$$

 $B \rightarrow int \mid (A)$

2) Fattorizzare a sinistra la seguente grammatica:

$$E \rightarrow int \mid int + E \mid int - E \mid E - (E)$$

3) effettuare la traduzione in codice intermedio di

while(
$$x < 3$$
) $z=1$;

4) Data la seguente grammatica (**a,b** sono terminali):

$$S \rightarrow X\mathbf{a}$$

$$X \rightarrow \mathbf{a} \mid \mathbf{a}X\mathbf{b}$$

- i) costruire l'automa LR(0) (indicare sono i viable prefix)
- ii) usando le regole SLR(1), individuare eventuali conflitti shift-reduce
- iii) risolvendo tutti gli eventuali conflitti **shift-reduce** scegliendo **shift**, mostrare tutti i passi del parser SLR(1) assumendo di avere in ingresso la stringa **aaba**
- 5) Data la seguente grammatica (id, (,), [,],;, sono terminali)

$$E \rightarrow \mathbf{id} X$$

$$X \rightarrow \varepsilon \mid (A) \mid [E]$$

$$A \rightarrow EY$$

$$Y \rightarrow \varepsilon \mid ; A$$

- i) calcolare FIRST e FOLLOW per ogni non-terminale
- ii) costruire la tabella LL(1)
- iii) mostrare tutti i passi del parser LL(1) assumendo di avere in ingresso la stringa id(id[id];id)
- 6) considerare il seguente blocco di base:

effettuare, nell'ordine:

- i) semplificazioni algebriche;
- ii) eliminazioni sottoespressioni comuni
- iii) copy propagation
- iv) constant folding