
Compilatori
1) Eliminare la ricorsione a sinistra nella seguente grammatica:

CS 143 Compilers Handout 4

Written Assignment 2

Due Tuesday, October 20, 2009

This assignment asks you to prepare written answers to questions on context-free grammars, parse

trees, and parsing. Each of the questions has a short answer. You may discuss this assignment with other

students and work on the problems together. However, your write-up should be your own individual work.

Written assignments can be turned in at the start of lecture. Alternatively, assignments can be turned

in at Professor Aiken’s office in Gates 411, or submitted electronically in PDF format by following the

electronic submission instructions at http://www.stanford.edu/class/cs143/policies/submit.html,
by 5:00 PM on the due date.

1. Give a context-free grammar (CFG) for each of the following languages over the alphabet Σ = {0, 1}:

(a) All strings in the language L : {0i
1

j |i ≤ j ≤ 2i ∧ i ≥ 0}
(b) All strings with an equal number of 0’s and 1’s.

(c) All strings with more 1’s than 0’s.

2. Consider the following CFG.

S → AED | F

A → Aa | a

B → Bb | b

C → Cc | c

D → Dd | d

E → bEc | bc

F → aFd | BC

(a) What is the language generated by this grammar?

(b) Show that this grammar is ambiguous by giving a string that can be parsed in two different ways.

Draw both parse trees.

(c) Give an unambiguous grammar that generates the same language as the grammar above.

3. (a) Left factor the following grammar:

E → int | int + E | int− E | E − (E)

(b) Eliminate left-recursion from the following grammar:

A→ A + B | B
B → int | (A)

Fall 2009/2010 page 1 of 2

2) Fattorizzare a sinistra la seguente grammatica:

CS 143 Compilers Handout 4

Written Assignment 2

Due Tuesday, October 20, 2009

This assignment asks you to prepare written answers to questions on context-free grammars, parse

trees, and parsing. Each of the questions has a short answer. You may discuss this assignment with other

students and work on the problems together. However, your write-up should be your own individual work.

Written assignments can be turned in at the start of lecture. Alternatively, assignments can be turned

in at Professor Aiken’s office in Gates 411, or submitted electronically in PDF format by following the

electronic submission instructions at http://www.stanford.edu/class/cs143/policies/submit.html,
by 5:00 PM on the due date.

1. Give a context-free grammar (CFG) for each of the following languages over the alphabet Σ = {0, 1}:

(a) All strings in the language L : {0i
1

j |i ≤ j ≤ 2i ∧ i ≥ 0}
(b) All strings with an equal number of 0’s and 1’s.

(c) All strings with more 1’s than 0’s.

2. Consider the following CFG.

S → AED | F

A → Aa | a

B → Bb | b

C → Cc | c

D → Dd | d

E → bEc | bc

F → aFd | BC

(a) What is the language generated by this grammar?

(b) Show that this grammar is ambiguous by giving a string that can be parsed in two different ways.

Draw both parse trees.

(c) Give an unambiguous grammar that generates the same language as the grammar above.

3. (a) Left factor the following grammar:

E → int | int + E | int− E | E − (E)

(b) Eliminate left-recursion from the following grammar:

A→ A + B | B
B → int | (A)

Fall 2009/2010 page 1 of 2

3) effettuare la traduzione in codice intermedio di
 while(x < 3) z=1;
4) Data la seguente grammatica (a,b sono terminali):

CS 143 Compilers Handout 4

4. Consider the following left-factored CFG, which has the set of terminals T = {id, (,), [,], ;}.

E → id X

X → ε | (A) | [E]
A → EY

Y → ε | ; A

(a) Give the first and follow sets for each non-terminal.

(b) Construct an LL(1) parsing table for the left-factored grammar.

(c) Show the operation of an LL(1) parser on the input string id(id[id]; id).

5. Consider the following CFG, which has the set of terminals T = {a,b}.

S → Xa
X → a | aXb

(a) Construct a DFA for viable prefixes of this grammar using LR(0) items.

(b) Identify a shift-reduce conflict in this grammar under the SLR(1) rules.

(c) Assuming that an SLR(1) parser resolves shift-reduce conflicts by choosing to shift, show the

operation of such a parser on the input string aaba.

(d) Suppose that the production X → ε is added to this grammar. Identify a reduce-reduce conflict

in the resulting grammar under the SLR(1) rules.

Fall 2009/2010 page 2 of 2

i) costruire l’automa LR(0) (indicare sono i viable prefix)
ii) usando le regole SLR(1), individuare eventuali conflitti shift-reduce
iii) risolvendo tutti gli eventuali conflitti shift-reduce scegliendo shift, mostrare tutti

i passi del parser SLR(1) assumendo di avere in ingresso la stringa aaba
5) Data la seguente grammatica (id , (,) , [,] , ; , sono terminali)

CS 143 Compilers Handout 4

4. Consider the following left-factored CFG, which has the set of terminals T = {id, (,), [,], ;}.

E → id X

X → ε | (A) | [E]
A → EY

Y → ε | ; A

(a) Give the first and follow sets for each non-terminal.

(b) Construct an LL(1) parsing table for the left-factored grammar.

(c) Show the operation of an LL(1) parser on the input string id(id[id]; id).

5. Consider the following CFG, which has the set of terminals T = {a,b}.

S → Xa
X → a | aXb

(a) Construct a DFA for viable prefixes of this grammar using LR(0) items.

(b) Identify a shift-reduce conflict in this grammar under the SLR(1) rules.

(c) Assuming that an SLR(1) parser resolves shift-reduce conflicts by choosing to shift, show the

operation of such a parser on the input string aaba.

(d) Suppose that the production X → ε is added to this grammar. Identify a reduce-reduce conflict

in the resulting grammar under the SLR(1) rules.

Fall 2009/2010 page 2 of 2

i) calcolare FIRST e FOLLOW per ogni non-terminale
ii) costruire la tabella LL(1)
iii) mostrare tutti i passi del parser LL(1) assumendo di avere in ingresso la stringa
 id(id[id];id)
6) considerare il seguente blocco di base:

CS 143 Compilers Handout 11

Written Assignment 4
Due Tuesday, December 1, 2009 at 5pm

This assignment asks you to prepare written answers to questions on code generation, operational

semantics, optimization, register allocation, and garbage collection. Each of the questions has a short

answer. You may discuss this assignment with other students and work on the problems together.

However, your write-up should be your own individual work. Written assignments can be turned in at

the start of lecture. Alternatively, assignments can be turned in at Professor Aiken’s office in Gates

411, or submitted electronically in PDF format by following the electronic submission instructions at

http://www.stanford.edu/class/cs143/policies/submit.html, by 5:00 PM on the due date.

1. (4 points) Suppose that we want to add the following conditional expression to Cool.

cond <p1> => <e1>; <p2> => <e2>; ... ; <pn> => <en>; dnoc

There must be at least one predicate and expression pair (that is, n ≥ 1). The evaluation of a cond
expression begins with the evaluation of the predicate <p1>, which must have static type Bool. If <p1>
evaluates to true, then <e1> is evaluated, and the evaluation of the cond expression is complete. If

<p1> evaluates to false, then <p2> is evaluated, and this process is repeated until one of the predicates

evaluates to true. The value of the cond expression is the value of the expression <ei> corresponding

to the first predicate <pi> that evaluates to true. If all the predicates evaluate to false, then the

value of the cond expression is void.

Write operational semantics rules for this conditional expression in Cool.

2. (4 points) Write a code generation function cgen(cond <p1> => <e1>; ... ; <pn> => <en>;
dnoc) for the conditional expression described in Question 1. For concreteness, assume that n = 2.

Use the stack machine architecture and conventions from the lectures.

3. (4 points) Consider the following basic block, in which all variables are integers, and ** denotes

exponentiation.

a := b + c
z := a ** 2
x := 0 * b
y := b + c
w := y * y
u := x + 3
v := u + w

Assume that the only variables that are live at the exit of this block are v and z. In order, apply the

following optimizations to this basic block. Show the result of each transformation.

(a) algebraic simplification

(b) common sub-expression elimination

(c) copy propagation

(d) constant folding

Fall 2009/2010 page 1 of 3

effettuare, nell’ordine:
i) semplificazioni algebriche;
ii) eliminazioni sottoespressioni comuni
iii) copy propagation
iv) constant folding

