\[\Lambda^k (V^*) = \{ \text{e}-forme su } V \} \]

\[\Lambda^k (V^*) = V^* \quad \text{se dim } V = n \]

La dimostrazione che \(\Lambda^k (V^*) \) è uno spazio vettoriale di dimensione
\[(\begin{array}{l} n \\ k \end{array}) = \frac{n!}{k!(n-k)!} = \frac{n(n-1)...(n-k+1)}{k!} \]

Dim. (conno) Sia \(e = (e_1, \ldots, e_m) \) una base qualsiasi di \(V \). \(w \) è individuata dai valori
\[w(e_{i_1}, e_{i_2}, \ldots, e_{i_k}) , \quad i_1 < i_2 < \ldots < i_k \]
intatti, in virtù dell'antisimmetria, permutando gli indici si ottiene
\[(\pm 1) w(e_{i_1}, e_{i_2}, \ldots, e_{i_k}) . \]
Il numero dei "parametri liberi"
è dato dalle combinazioni di \(m \) oggetti in \(k \) posti (gli aggiornamenti della \(k \)-forma, si prescende infatti dall'ordine)
up to order

In maggiori dettagli, sia \(e^I = (e_{i_1}, \ldots, e_{i_k}) \) multiindice
la \(k \)-forma tale che
\[e^I (e_{i_1}, \ldots, e_{i_k}) = \begin{cases} \pm 1 & \text{se } J = (i_1, \ldots, i_k) \\ 0 & \text{in caso contrario} \end{cases} \]

Si ha:
\[w = \sum w(e_{i_1}, e_{i_2}, \ldots, e_{i_k}) e^I \]

Inoltre, le \(\{ e^I \} \) sono l. i. (verificalo check it)

In particolare, se \(n < k \), allora
\[\Lambda^k (V^*) = \{ 0 \} \]

A breve, dobbiamo trovare la rappresentazione
di \(e^I \) in termini di \(1 \)-forme
Prodotto esterno di forme (wedge product)

$\omega^k : k$-forma

$\omega^l : l$-forma

$\omega^k \wedge \omega^l$ (v$_1$... v$_{k+l}$) :=

$$
\frac{1}{(k+l)!} \sum (-1)^\gamma \omega^k (v_{i_1} ... v_{i_k}) \omega^l (v_{i_{k+1}} ... v_{i_{k+l}})
$$

Proprietà

1. **Anticommutività**

(Commutatività in senso graduato)

graded commutativity

$$
\omega^k \wedge \omega^l = (-1)^{kl} \omega^l \wedge \omega^k
$$

2. **Distributività**

$$(\alpha \omega^k + \beta \omega^l) \wedge \omega^l =
\alpha \omega^k \wedge \omega^l + \beta \omega^l \wedge \omega^l$$

3. **Associazività**

$$(\omega^k \wedge \omega^l) \wedge \omega^p = \omega^k \wedge (\omega^l \wedge \omega^p)$$

$$(\omega^k \wedge \omega^l) \wedge \omega^p = \omega^k \wedge (\omega^l \wedge \omega^p)$$

$$(\omega^k \wedge \omega^l) \wedge \omega^p = \omega^k \wedge (\omega^l \wedge \omega^p)$$
Verifichiamo la quantità di scambi:

\[
\begin{pmatrix}
(i_1 & \ldots & i_K & i_{K+1} & i_{K+2} \\
i_{K+1} & i_{K+2} & \ldots & i_K
\end{pmatrix}
\]

può avvenire se e solo se
\[i_{K+1} \neq i_{K+2} \ldots i_K\]

sono richiesti \(R + R + \ldots + R \) scambi.

e questo può avvenire \(k \) volte.

e questo \(k \) addendo.

Dunque, ha, il coefficiente del prod. diventa

\[(-1)^k + 1 \]

e dato che

\[(-1)^k = (-1)^{k+1} \times (-1)^k \times (-1)^k \]

può essere riportato in ciascuna.

Quindi, e chiara, 3 verrà illustrata più avanti.

\[
\begin{align*}
(\omega^K \wedge \omega^E) (v_1, \ldots, v_{K+1}) &= \frac{1}{K! E!} \sum (-1)^k \omega^E(v_{i_1}, \ldots, v_{i_K}) \omega^K(v_{i_K}, \ldots, v_{i_{K+1}}) \\
&= \frac{1}{K! E!} \sum (-1)^k \omega^E(v_{i_1}, \ldots, v_{i_K}) \omega^K(v_{i_K}, \ldots, v_{i_{K+1}}) \\
&= (-2)^K \frac{1}{K! E!} \sum (-1)^{k+1} \omega^E(v_{i_1}, v_{i_{K+1}}) \omega^K(v_{i_1}, \ldots, v_{i_{K+1}}) \\
&= (-1)^K \omega^E \wedge \omega^K (v_1, \ldots, v_{K+1})
\end{align*}
\]
Verifichiamo l'associazività di \wedge

e' sufficiente verificare per i monomi della forma $e_i^* \wedge e_j^* \lambda e_k$, in virtù dell'induzione, di fatto ci basta verificare che, ad esempio, per fissare le idee,

$$(e_1^* \wedge e_2^*) \wedge e_3^* = e_1^* \wedge (e_2^* \wedge e_3^*)$$

$$= e_1^* \wedge e_2^* \wedge e_3^*$$

ed è sufficiente verificare l'uguaglianza

$$Le (e_1, e_2, e_3) \quad (troveremo 1)$$

$$(e_1^* \wedge e_2^*) \wedge e_3^* \prec (e_1, e_2, e_3) =$$

$$\frac{1}{2} \left[e_1^* \wedge e_2^* (e_1^* e_2^*) e_3^* (e_3^* e_3^*) - e_1^* \wedge e_2^* (e_2^* e_1^*) e_3^* (e_3^*- 1 e_3^* e_3^* \right]$$

$$= \frac{1}{2} (1 + 1) = 1$$

Analogamente

$$e_1^* \wedge (e_2^* \wedge e_3^*) \prec (e_1, e_2, e_3) = 1$$

Si può procedere anche indifferentemente, in modo opposto, V. oltre

\[\text{III - 11} \]
Esempi.

 Nel caso di un l-forme ω, ha

$$
\omega_1 \wedge \omega_2 \wedge \ldots \wedge \omega_k \left(v_1 \ldots v_k \right) =
$$

$$
\begin{pmatrix}
\omega_1(v_1) & \omega_k(v_2) \\
\vdots & \vdots \\
\omega_1(v_k) & \omega_k(v_k)
\end{pmatrix}
$$

volume di un parallelotipo $hyperparallelepode$

opposto

$m \in \mathbb{R}^k$

in particolare, si consideri

$e^*_1 \wedge e^*_2 \wedge \ldots \wedge e^*_k \neq 0$ è una l-forme
dal'uno spazio base $\Lambda^l \left(V^* \right)$

si ha sarato

$$(e^*_1 \wedge e^*_2 \wedge \ldots \wedge e^*_k) (e_{j_1}, e_{j_2}, \ldots e_{j_k})$$

$$= \sum_{\pi \in S_k} \pm 1 \left\{ i_1 \ldots i_k \right\} = \left\{ j_1 \ldots j_k \right\}$$

il segno è quello della permutazione corrispondente

all'inversa

$$e^*_I = e^*_{i_1} \wedge \ldots \wedge e^*_{i_k}$$

definita precedentemente

$\Pi - 4$
\[\begin{aligned}
\Phi & \in \mathbb{R}^2 \\
\left(e_1^* \wedge e_2^* \right) (\nu_1, \nu_2) &= \nu_1 = \alpha_1 e_1 + \alpha_2 e_2 \\
\nu_2 &= \beta_1 e_1 + \beta_2 e_2 \\
\left(e_1^* \wedge e_2^* \right) (\alpha_1 e_1 + \alpha_2 e_2, \beta_1 e_1 + \beta_2 e_2) \\
&= \left(e_1^* \wedge e_2^* \right) (\alpha_1, \beta_1) e_1 \wedge (\alpha_2, \beta_2) e_2 \\
&= \alpha_1 \beta_1 \left(e_1^* \wedge e_2^* \right) (e_1, e_1) + \alpha_1 \beta_2 \left(e_1^* \wedge e_2^* \right) (e_1, e_2) + \alpha_2 \beta_1 \left(e_1^* \wedge e_2^* \right) (e_2, e_1) + \alpha_2 \beta_2 \left(e_1^* \wedge e_2^* \right) (e_2, e_2) \\
&= \alpha_1 \beta_2 - \alpha_2 \beta_1 \\
&= \begin{vmatrix} \alpha_1 & \beta_1 \\ \alpha_2 & \beta_2 \end{vmatrix}
\end{aligned} \]

\[\begin{aligned}
\Phi & \in \mathbb{R}^3 \\
\left(e_1^* \wedge e_2^* \wedge e_3^* \right) (\nu_1, \nu_2, \nu_3) \\
&= \ldots = \begin{vmatrix} \alpha_1 & \beta_1 & \gamma_1 \\ \alpha_2 & \beta_2 & \gamma_2 \\ \alpha_3 & \beta_3 & \gamma_3 \end{vmatrix} \\
&= \operatorname{vol} (\nu_1, \nu_2, \nu_3)
\end{aligned} \]
Si può scrivere così:

\[\Phi_F = F_1 e_2 \times e_3 + F_2 e_3 \times e_1 + F_3 e_1 \times e_2 \]

es. se \(F = F_3 e_2 \) non c'è flusso attraverso

c'è flusso attraverso
Siano \(w_a = \frac{3}{2} a_i e_i \) e \(w_b = \frac{3}{2} b_i e_i \) in \(\mathbb{R}^3 \)

\[a = (a_1, a_2, a_3) \]
\[b = (b_1, b_2, b_3) \]

Calcoliamo \(w_a \wedge w_b \); usso uguaglianza successivamente (es.)

\[\sum_{i,j} a_i b_j e_i \wedge e_j = \ldots = \]

\[\frac{3}{2} (a_1 b_2 - a_2 b_1) e_1 \wedge e_2 + \]
\[\frac{3}{2} (a_2 b_3 - a_3 b_2) e_2 \wedge e_3 + \]
\[\frac{3}{2} (a_3 b_1 - a_1 b_3) e_3 \wedge e_1 \]

Ancora la forma del flusso completo del \(\beta \)

Poriamo \(w_c = w_c (v_1, v_2) = \langle c, v_1 \times v_2 \rangle \)
\[= \det (c_1, v_1, v_2) \]

Si ha infatti \(w_c = c_4 e_2 \wedge e_3 + c_2 e_3 \wedge e_1 \]
\[+ c_3 e_1 \wedge e_2 \]

Infatti secondo membro (es. \(e_1, e_2 \)) = \ldots = c_3

\[w_c (e_1, e_2) = \det (c, e_1, e_2) = \begin{vmatrix} c_1 & 0 & 0 \\ e_1 & 0 & 0 \\ e_3 & 0 & 0 \end{vmatrix} = (\text{Laplace}) \]
\[= (-1)(-c_3) = c_3 \]

\[\text{Ecc. (Completere)} \]

\[\text{III. 7} \]
In definitiva

$$\omega_a \wedge \omega_b = \omega_c$$

$$\mathbf{c} = \mathbf{a} \times \mathbf{b}$$

E si può vedere come una generalizzazione di \mathbf{x}, ma con le davanti cantele.

L'operatore di Hodge (\star) in $\Lambda(\mathbb{R}^3)$

L'operatore di Hodge (\star) in $\Lambda(\mathbb{R}^3)$

(\star in generale $\star : \Lambda^p \rightarrow \Lambda^{n-q}$)

Si ha (visto a x_0)

$$\star \omega_c = \omega_a$$