
Systems Design Laboratory

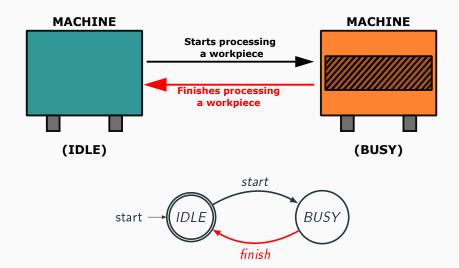
A Supervisory Control Example

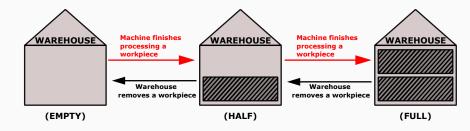
Matteo Zavatteri

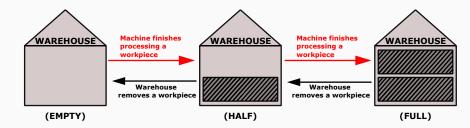
Department of Computer Science, University of Verona, ITALY

Machine-Warehouse Example

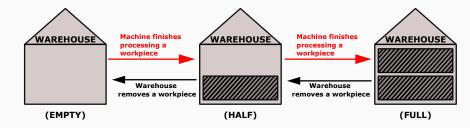
- A machine processing workpieces
- A warehouse storing finished workpieces


- Initially, the machine is IDLE
- Once it starts processing a workpiece it is BUSY
- Once it is BUSY it can finish processing a workpiece (this event must always be possible)
- The machine can process an infinite number of workpieces


Automaton for Machine


- States?
- Events and transitions?

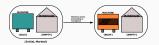
Automaton for Machine - States

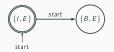


- The warehouse has a capacity of two workpieces
- Initially, the warehouse is EMPTY
- Synchronization: when the machine finishes processing a workpiece, the workpiece is stored in the warehouse
- At any time, the warehouse can remove a workpiece (if any)

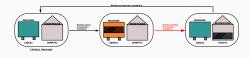
- States?
- Events and transitions?

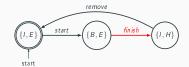
Warehouse

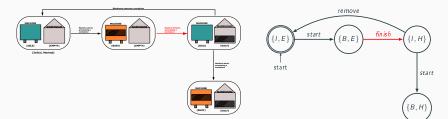



Graphical Description

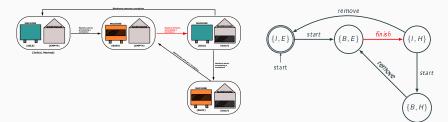
Graphical Description

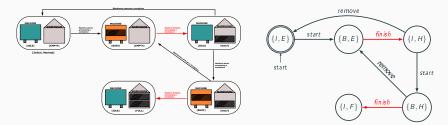



Graphical Description

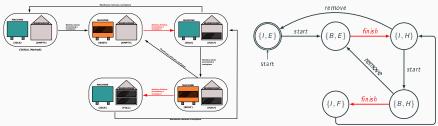


Graphical Description

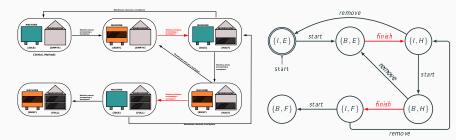



Graphical Description

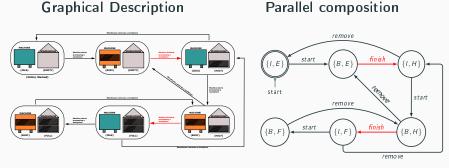
Graphical Description



Graphical Description

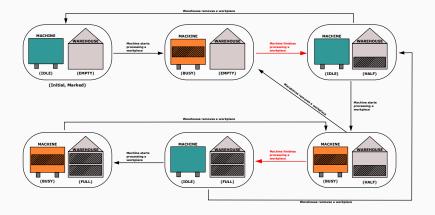

Graphical Description

Parallel composition

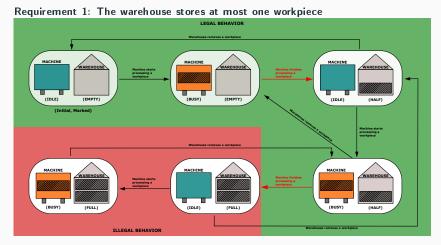


remov

Graphical Description

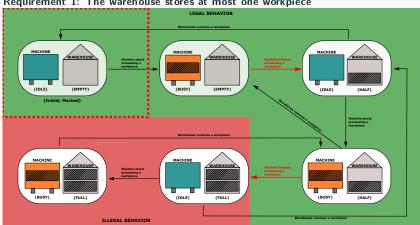


Concurrency and Synchronization - Plant



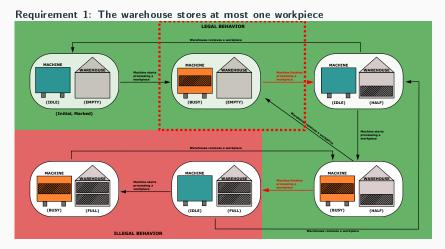
Note: When the machine is BUSY and the warehouse is FULL, despite *finish* is uncontrollable, the machine cannot execute it since *finish* is not executable by the warehouse.

This means that, by exploiting synchronization, **and at plant level only**, we can prevent uncontrollable events from executing (by composing the "right" automata).

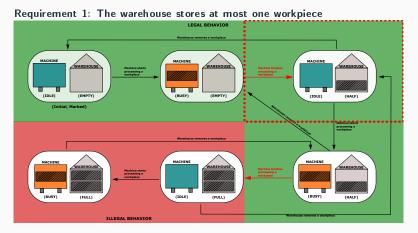


Example 1: Supervisory Control - Desired Behavior

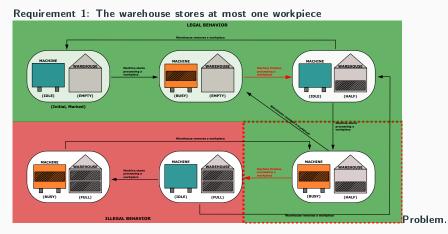
Can we control the plant in order to enforce such behavior? Can you spot any problem?


Example 1: Supervisory Control - Desired Behavior - Problem

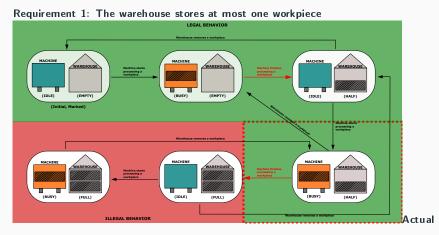
Requirement 1: The warehouse stores at most one workpiece


No problem. When the machine is IDLE and the warehouse is EMPTY, the machine can start processing a workpiece. This leads to machine BUSY and warehouse EMPTY which is still a desired behavior.

Example 1: Supervisory Control - Desired Behavior - Problem

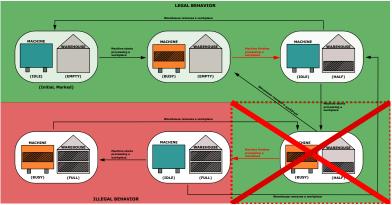

No problem. When the machine is BUSY and the warehouse is EMPTY, the machine can finish processing the workpiece. This leads to machine IDLE and warehouse HALF which is still a desired behavior.

Example 1: Supervisory Control - Desired Behavior - Problem

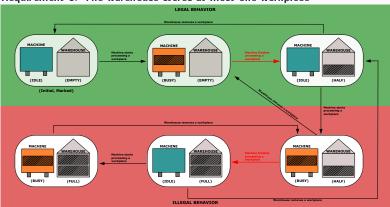

No problem. When the machine is IDLE and the warehouse is HALF, either the machine starts processing a workpiece (leading to machine BUSY, warehouse EMPTY) or the warehouse removes a workpiece from its storage (leading to machine IDLE, warehouse EMPTY). Either way, they are both desired behaviors.

Example 1: Supervisory Control - Controllable Behavior

When the machine is BUSY and the warehouse is HALF, either the the warehouse removes a workpiece from its storage (leading to machine BUSY, warehouse EMPTY) or the machine finishes processing the workpiece (leading to machine IDLE, warehouse FULL). The second case is not a desired behavior.

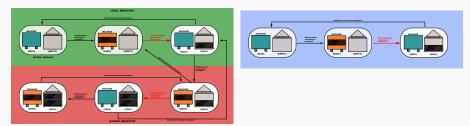

Example 1: Supervisory Control - Desired Behavior

Problem. When the machine is BUSY and the warehouse is HALF we cannot prevent machine from finishing processing the workpiece because *finish* is uncontrollable and it is executable in the plant.


Example 1: Supervisory Control - Desired Behavior - Solution

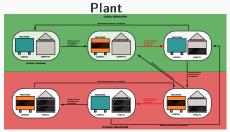
Solution. We need to prevent the plant to get to that state. That is, we prevent machine to start processing a workpiece when machine is IDLE and the warehouse is HALF.

Example 1: Supervisory Control - Controllable Behavior

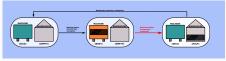

Requirement 1: The warehouse stores at most one workpiece

Actual controllable behavior (supremal controllable sublanguage).

Requirement 1: The warehouse stores at most one workpiece


Plant

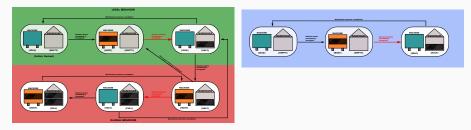
Supervisor


Example 1: Supervisory Control - Supervisor

Requirement 1: The warehouse stores at most one workpiece

 $(I, E) \xrightarrow{start} (B, E) \xrightarrow{finish} (I, H) \xrightarrow{remove} start$

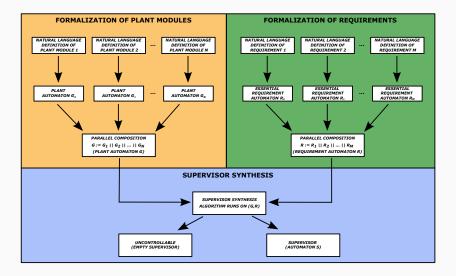
Supervisor


How can we synthesize this supervisor automatically?

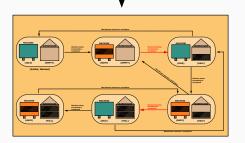
Example 1: Supervisory Control - Supervisor

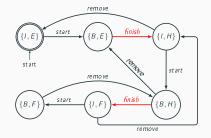
Requirement 1: The warehouse stores at most one workpiece

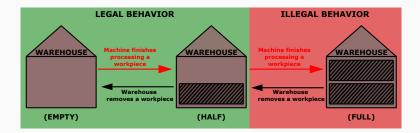
Plant


Supervisor

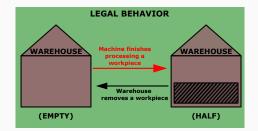
- Basically the supervisor here is the "intended part" of the system
- We would like to avoid computing it "by hand" (this case study is simple, but what about a real one?)

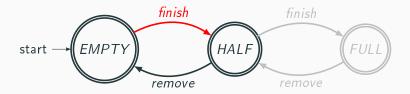

We need formal methods!

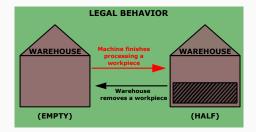

Supervisor Synthesis: Workflow



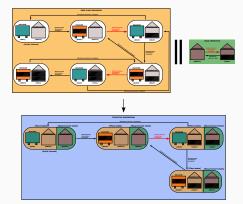
Plant Automaton G

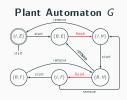




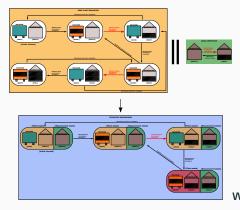

- States?
- Transitions?

Example 1: Supervisor Synthesis - Essential Requirement

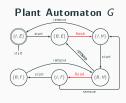



Example 1: Supervisor Synthesis - Essential Requirement

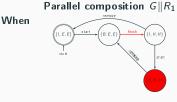
Example 1: Synthesis Algorithm - Tentative Supervisor



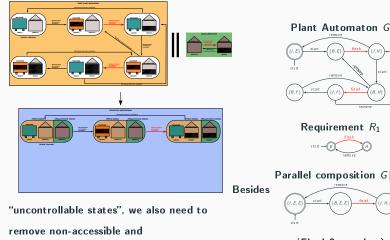
Parallel composition $G || R_1$

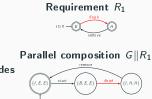


(Tentative Supervisor)


Example 1: Synthesis Algorithm - Removal of States

the machine is BUSY and the warehouse is HALF, the machine is prevented to finish. However, at plant level this is not permitted.

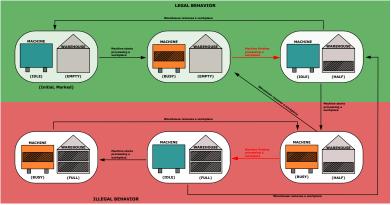


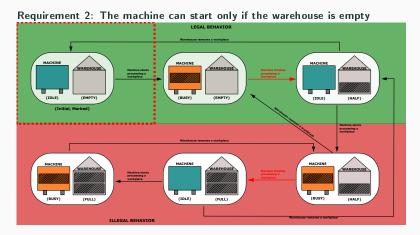

(Tentative Supervisor)

Example 1: Synthesis Algorithm - No more removals

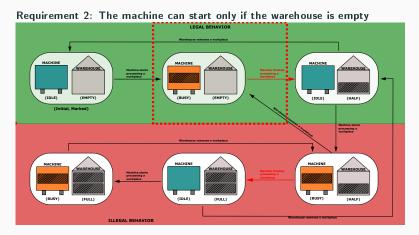
non-coacessible states, if any (this

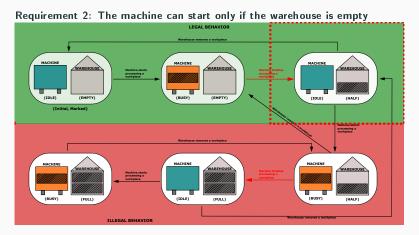
example has none).



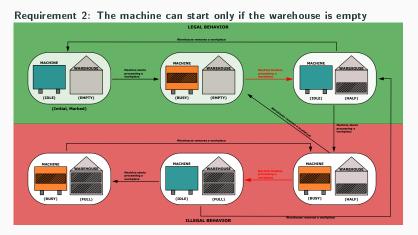

finish

 $\{B, H\}$

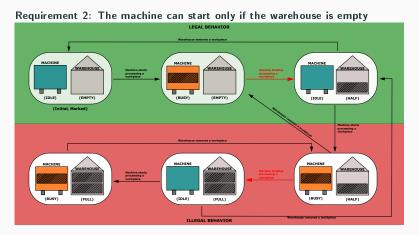



Let's see if we spot any problems

No problem. When the machine is IDLE and the warehouse is EMPTY, the machine can start processing a workpiece. This leads to machine BUSY and warehouse EMPTY which is still a desired behavior.



No problem. When the machine is BUSY and the warehouse is EMPTY, the machine can finish processing the workpiece. This leads to machine IDLE and warehouse HALF which is still a desired behavior.


No problem. When the machine is IDLE and the warehouse is HALF, either the warehouse removes a workpiece from its storage (leading to machine IDLE, warehouse EMPTY) or the machine starts processing a workpiece (leading to machine BUSY, warehouse EMPTY). The second is an undesired behavior.

Example 2: Supervisory Control - Controllable Behavior

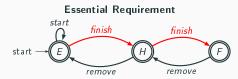
However, in this state of the plant, since *start* is controllable, we can prevent the machine from starting working a workpiece. Therefore, the desired behavior is also controllable.

Example 2: Supervisory Control - Controllable Behavior

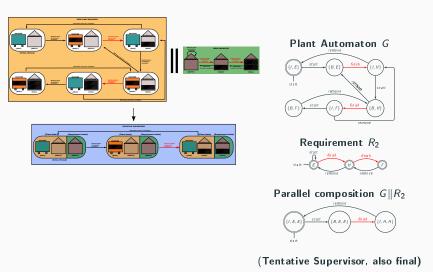
However, in this state of the plant, since *start* is controllable, we can prevent the machine from starting working a workpiece. Therefore, the desired behavior is also controllable.

Example 2: Supervisor Synthesis - Essential Requirement

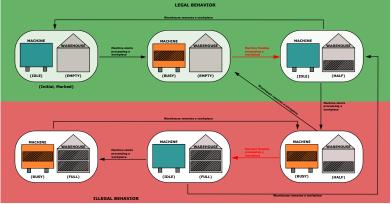
Requirement 2: The machine can start only if the warehouse is empty



Essential Requirement

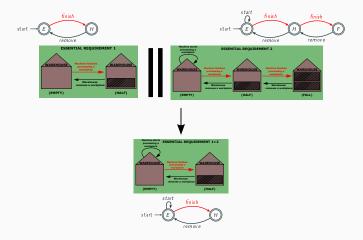

- States?
- Transitions?

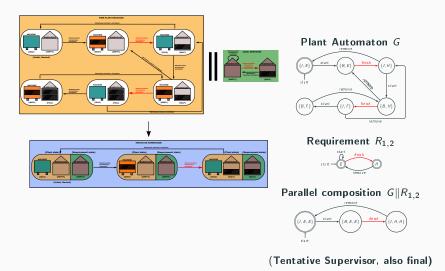
Requirement 2: The machine can start only if the warehouse is empty



Example 2: Synthesis Algorithm - Tentative Supervisor

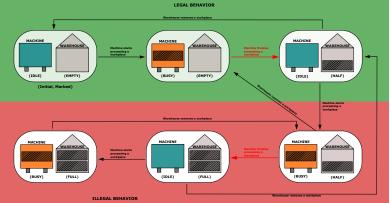
Requirement 1,2: The warehouse stores at most one workpiece AND the



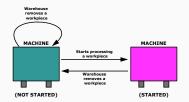

Same desired behavior of Requirement 2

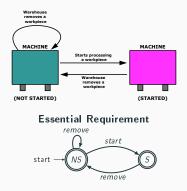
Example 3: Combining Requirements 1 and 2

Requirement 1,2: The warehouse stores at most one workpiece AND the machine can start only if the warehouse is empty

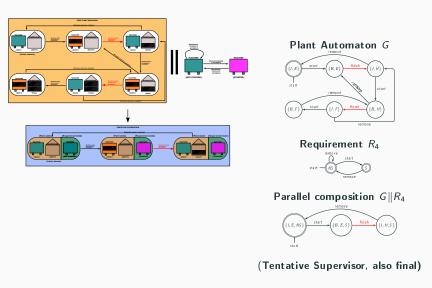

Example 3: Synthesis Algorithm - Tentative Supervisor

49

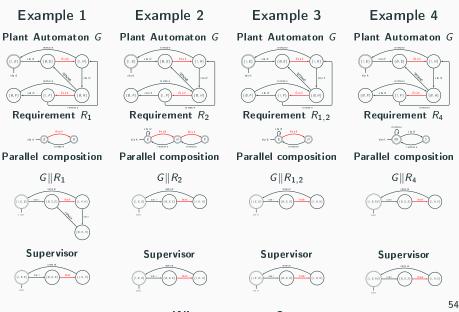

Requirement 4: If the Machine starts, then the warehouse must remove a


Same desired behavior of Requirement 2 and 1+2

Requirement 4: If the Machine starts, then the warehouse must remove a workpiece before the machine can start again.



- States?
- Transitions?


Requirement 4: If the Machine starts, then the warehouse must remove a workpiece before the machine can start again.

Example 4: Synthesis Algorithm - Tentative Supervisor

Comparing Different Requirements and Related Supervisors

What can we say?

Example 1	Example 2	Example 3	Example 4	What we can say
				Same plant G
				Syntactically Different
				Requirements
(1, r, r) - (1, r, r) - 5 H (1, r, r)	(1.1.1 - 1.1 - (1.1.1	(1.7.7) (1.7.7)		R ₁ is semantically dif-
	1	<u> </u>		ferent from R ₂ , R _{1,2} ,
				and R ₄ , whereas R ₂ ,
				$R_{1,2}$, and R_4 are se-
				matically equivalent.
	(1.1.1)	(1.2.2) (1.2.2) (1.2.2) (1.2.2) (1.2.2) (1.2.2) (1.2.2) (1.2.2) (1.2.2) (1.2.2)		Same final supervisor
				(same supremal con-
				trollable sublanguage)