ESERCIZIO 1

Sulla distribuzione di frequenze presentata in tabella, calcolare:

a) la media aritmetica, la media armonica, la media geometrica e la media quadratica;
b) la mediana e la moda;
c) la varianza.

<table>
<thead>
<tr>
<th>X</th>
<th>f</th>
<th>X*f</th>
<th>f/X</th>
<th>ln(X)</th>
<th>ln(X)*f</th>
<th>X²</th>
<th>X²*f</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>16</td>
<td>32</td>
<td>8.00</td>
<td>0.6931</td>
<td>11.0904</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>5</td>
<td>22</td>
<td>110</td>
<td>4.40</td>
<td>1.6094</td>
<td>35.4076341</td>
<td>25</td>
<td>550</td>
</tr>
<tr>
<td>9</td>
<td>15</td>
<td>135</td>
<td>1.67</td>
<td>2.1972</td>
<td>32.9553687</td>
<td>81</td>
<td>1215</td>
</tr>
<tr>
<td>12</td>
<td>47</td>
<td>564</td>
<td>3.92</td>
<td>2.4849</td>
<td>116.7906</td>
<td>144</td>
<td>6768</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>841</td>
<td>17.98</td>
<td>6.9847</td>
<td>196.2470</td>
<td>8597</td>
<td></td>
</tr>
</tbody>
</table>

a) Calcolo della media aritmetica, armonica e geometrica:

\[M(X) = \frac{\sum X \times f}{\sum f} = \frac{841}{100} = 8.4100 \]

\[Ma(X) = \frac{\sum f}{\sum f/x} = \frac{100}{18.0} = 5.5607 \]

\[\ln(Mg(X)) = \frac{\sum \ln(X) \times f}{\sum f} = \frac{196.2470}{100} = 1.9625 \]

\[Mg(X) = e^{1.6551} = 7.1169 \]

\[M_2(X) = \sqrt{\frac{\sum X^2 \times f}{\sum f}} = \sqrt{\frac{8597}{100}} = 9.2720 \]

b) Calcolo della mediana e della moda:

\[X_{50^\circ} = \text{mediana} = X_{51^\circ} : \text{me} = 9 \]

moda = 12

c) Calcolo della varianza:

\[V(X) = M(X^2) - m(X)^2 = \frac{8597}{100} - 8.41^2 = 15.2419 \]
ESERCIZIO 2

Utilizzare le formule del calcolo combinatorio per rispondere ai seguenti quesiti:

a) Quante parole, anche prive di significato, posso creare utilizzando ogni volta tutte le lettere contenute nel termine “INFORMATICA”?

Applico la formula per le Permutazioni di 11 elementi con ripetizione (ci sono 2 I e 2 A):

\[
P_{11}^{(2,2)} = \frac{11!}{2! \cdot 2!} = \frac{39.916.800}{4} = 9.979.200
\]

b) In quanti modi diversi un negoziante può disporre 8 oggetti diversi nella sua vetrina?

Si tratta di un caso di Permutazione semplice di 8 oggetti:

\[
P_8 = 8! = 40.320
\]

ESERCIZIO 3

Lo schema da utilizzare è quello della v.c. Binomiale con parametri:

\[
p = 0,25
\]
\[
n = 4
\]

La distribuzione di probabilità quindi è la seguente:

<table>
<thead>
<tr>
<th>X</th>
<th>P(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,3164</td>
</tr>
<tr>
<td>1</td>
<td>0,4219</td>
</tr>
<tr>
<td>2</td>
<td>0,2109</td>
</tr>
<tr>
<td>3</td>
<td>0,0469</td>
</tr>
<tr>
<td>4</td>
<td>0,0039</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Media = np = 1
Varianza = npq = 0,75

ESERCIZIO 4 - LAB

CREO IL VETTORE DELLE X:
k=c(0:4)

CALCOLO I VALORI DELLA VARIABILE BINOMIALE:
dbinom(k, 4, 0.25)

DISEGNO IL GRAFICO DELLA DISTRIBUZIONE DI PROBABILITÀ:
barplot(dbinom(k,4,0.25), names.arg=k, xlab="X", ylab="P(X)"")

ESERCIZIO 5 - LAB

CREO I VETTORI DEI DATI
dati=c(21, 44, 54, 16, 25, 16, 33, 30)

EFFETTUO IL TEST BILATERALE PER VERIFICARE LE IPOTESI:
H0: mu=30 \quad H1: mu!=30
t.test(voti, mu=30, alternative="two.sided", conf.level=0.99)
PROBABILITA' E STATISTICA
Prova del 16/06/2017
Traccia B

ESERCIZIO 1

Sulla distribuzione di frequenze presentata in tabella, calcolare:

a) la media aritmetica, la media armonica, la media geometrica e la media quadratica;

b) la mediana e la moda;

c) la varianza.

<table>
<thead>
<tr>
<th>X</th>
<th>f</th>
<th>X*f</th>
<th>f/X</th>
<th>ln(X)</th>
<th>ln(X)*f</th>
<th>X 2</th>
<th>X²*f</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>25</td>
<td>75</td>
<td>8,33</td>
<td>1,0986</td>
<td>27,4653</td>
<td>9</td>
<td>225</td>
</tr>
<tr>
<td>6</td>
<td>30</td>
<td>180</td>
<td>5,00</td>
<td>1,7918</td>
<td>53,7528</td>
<td>36</td>
<td>1080</td>
</tr>
<tr>
<td>7</td>
<td>19</td>
<td>133</td>
<td>2,71</td>
<td>1,9459</td>
<td>36,9723</td>
<td>49</td>
<td>931</td>
</tr>
<tr>
<td>11</td>
<td>46</td>
<td>506</td>
<td>4,18</td>
<td>2,3979</td>
<td>110,3032</td>
<td>121</td>
<td>5566</td>
</tr>
<tr>
<td>120</td>
<td>894</td>
<td>20,23</td>
<td>7,2342</td>
<td>228,4936</td>
<td>120</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a) Calcolo della media aritmetica, armonica e geometrica:

\[M(X) = \frac{\sum X \cdot f}{\sum f} = \frac{894}{120} = 7,4500 \]

\[Ma(X) = \frac{\sum f}{\sum \frac{f}{X}} = \frac{120}{20,2} = 5,9319 \]

\[\ln(Mg(X)) = \frac{\sum \ln(X) \cdot f}{\sum f} = \frac{228,4936}{120} = 1,9041 \]

\[Mg(X) = e^{1,6551} = 6,7135 \]

\[M_2(X) = \sqrt{\frac{\sum X^2 \cdot f}{\sum f}} = \sqrt{\frac{7802}{120}} = 8,0633 \]

b) Calcolo della mediana e della moda:

\[X_{60}^o < \text{mediana} < X_{61}^o : me = 7 \]

moda = 11

c) Calcolo della varianza:

\[V(X) = M(X^2) - m(X)^2 = 7802/120 - 7,45^2 = 9,5142 \]
ESERCIZIO 2

Utilizzare le formule del calcolo combinatorio per rispondere ai seguenti quesiti:

a) In quante maniere possono classificarsi sul podio 10 piloti di Moto GP?

Calcolo le Disposizioni semplici di 10 elementi in gruppi di 3:

\[
D_{10,3} = \frac{10!}{(10-3)!} = \frac{3.628.800}{5.040} = 720
\]

b) E se al primo posto volessimo sempre Valentino Rossi?

Calcolo le Disposizioni semplici di 9 elementi in gruppi di 2:

\[
D_{9,2} = \frac{9!}{(9-2)!} = \frac{362.880}{5.040} = 72
\]

ESERCIZIO 3

Lo schema da utilizzare è quello della v.c. Binomiale con parametri:

\[
p = 0.5 \\
n = 4
\]

La distribuzione di probabilità quindi è la seguente:

<table>
<thead>
<tr>
<th>X</th>
<th>P(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0625</td>
</tr>
<tr>
<td>1</td>
<td>0.2500</td>
</tr>
<tr>
<td>2</td>
<td>0.3750</td>
</tr>
<tr>
<td>3</td>
<td>0.2500</td>
</tr>
<tr>
<td>4</td>
<td>0.0625</td>
</tr>
</tbody>
</table>

Media = \(np = 2 \)
Varianza = \(npq = 1 \)

ESERCIZIO 4 - LAB

```r
# CREO IL VETTORE DELLE X:
k=c(0:4)
# CALCOLO I VALORI DELLA VARIABILE BINOMIALE:
dbinom(k, 4, 0.5)
# DISEGNO IL GRAFICO DELLA DISTRIBUZIONE DI PROBABILITÀ:
barplot(dbinom(k,4,0.5), names.arg=k, xlab="X", ylab="P(X)")
```

ESERCIZIO 5 - LAB

```r
# CREO I VETTORI DEI DATI
data=c(42, 63, 58, 67, 35, 98, 45, 55)
# EFFETTUIO IL TEST BILATERALE PER VERIFICARE LE IPOTESI:
# H0: mu=58  H1: mu!=58
t.test(voti, mu=58, alternative="two.sided", conf.level=0.99)
```
ESERCIZIO 1

Sulla distribuzione di frequenze presentata in tabella, calcolare:

a) la media aritmetica, la media armonica, la media geometrica e la media quadratica;
b) la mediana e la moda;
c) la varianza.

<table>
<thead>
<tr>
<th>X</th>
<th>f</th>
<th>X*f</th>
<th>f/X</th>
<th>ln(X)</th>
<th>ln(X)*f</th>
<th>X^2</th>
<th>X^2*f</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>26</td>
<td>312</td>
<td>2.17</td>
<td>2.4849</td>
<td>64.6076</td>
<td>144</td>
<td>3744</td>
</tr>
<tr>
<td>14</td>
<td>11</td>
<td>154</td>
<td>0.79</td>
<td>2.6391</td>
<td>29.0296</td>
<td>196</td>
<td>2156</td>
</tr>
<tr>
<td>18</td>
<td>23</td>
<td>414</td>
<td>1.28</td>
<td>2.8904</td>
<td>66.4786</td>
<td>324</td>
<td>7452</td>
</tr>
<tr>
<td>21</td>
<td>20</td>
<td>420</td>
<td>0.95</td>
<td>3.0445</td>
<td>60.8904</td>
<td>441</td>
<td>8820</td>
</tr>
<tr>
<td>80</td>
<td>1300</td>
<td>5.18</td>
<td>11,0589</td>
<td>221,0062</td>
<td>22172</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a) Calcolo della media aritmetica, armonica e geometrica:

\[M(X) = \frac{\Sigma X \cdot f}{\Sigma f} = \frac{1300}{80} = 16,2500 \]

\[Ma(X) = \frac{\Sigma f}{\Sigma f/x} = \frac{80}{5.2} = 15,4364 \]

\[ln(Mg(X)) = \frac{\Sigma ln(X) \cdot f}{\Sigma f} = \frac{221,0062}{80} = 2,7626 \]

\[Mg(X) = e^{1.6551} = 15,8406 \]

\[Mq(X) = \sqrt{\frac{\Sigma X^2 \cdot f}{\Sigma f}} = \sqrt{\frac{22172}{80}} = 16,6478 \]

b) Calcolo della mediana e della moda:

X_{40}^o = \text{mediana} = X_{41}^o : me = 18

\text{moda} = 12

c) Calcolo della varianza:

\[V(X) = M(X^2) - m(X)^2 = \frac{22172}{80} - 16.25^2 = 13.0875 \]
ESERCIZIO 2

Utilizzare le formule del calcolo combinatorio per rispondere ai seguenti quesiti:

a) Quanti numeri di 5 cifre posso creare anche usando più volte ogni cifra? (Valgono anche i casi con lo zero davanti, ad es. 00001, 01234, ecc.)

Calcolo le Disposizioni semplici di 10 elementi in gruppi di 5 con ripetizione:

\[D'_{10,3} = \binom{10}{5} = 100.000 \]

b) In quanti modi diversi 8 amici possono viaggiare su un’auto con 4 posti? (A prescindere dall’ordine in cui si siedono)

Si tratta di un caso di Combinazione semplice di 8 elementi presi in gruppi di 4:

\[C_{8,4} = \binom{8}{4} = 70 \]

ESERCIZIO 3

Lo schema da utilizzare è quello della v.c. Binomiale con parametri:

\[p = 0.23 \]
\[n = 4 \]

La distribuzione di probabilità quindi è la seguente:

<table>
<thead>
<tr>
<th>X</th>
<th>P(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.3515</td>
</tr>
<tr>
<td>1</td>
<td>0.4200</td>
</tr>
<tr>
<td>2</td>
<td>0.1882</td>
</tr>
<tr>
<td>3</td>
<td>0.0375</td>
</tr>
<tr>
<td>4</td>
<td>0.0028</td>
</tr>
</tbody>
</table>

Media = np = 0.92
Varianza = npq = 0.7084

ESERCIZIO 4 - LAB

CREO IL VETTORE DELLE X:
k=c(0:4)

CALCOLO I VALORI DELLA VARIABILE BINOMIALE:
dbinom(k, 4, 0.23)

DISEGNO IL GRAFICO DELLA DISTRIBUZIONE DI PROBABILITÀ:
barplot(dbinom(k,4,0.23), names.arg=k, xlab="X", ylab="P(X)")

ESERCIZIO 5 - LAB

CREO I VETTORI DEI DATI
dati=c(51, 63, 80, 43, 55, 88, 60, 40)

EFFETTUO IL TEST BILATERALE PER VERIFICARE LE IPOTESI:
H0: mu=40 H1: mu!=40
t.test(voti, mu=40, alternative="two.sided", conf.level=0.99)
ESERCIZIO 1

Sulla distribuzione di frequenze presentata in tabella, calcolare:

a) la media aritmetica, la media armonica, la media geometrica e la media quadratica;

b) la mediana e la moda;

c) la varianza.

<table>
<thead>
<tr>
<th>X</th>
<th>f</th>
<th>X*f</th>
<th>f/X</th>
<th>ln(X)</th>
<th>ln(X)*f</th>
<th>X²</th>
<th>X²*f</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>47</td>
<td>235</td>
<td>9.40</td>
<td>1.6094</td>
<td>75.6436</td>
<td>25</td>
<td>1175</td>
</tr>
<tr>
<td>6</td>
<td>21</td>
<td>126</td>
<td>3.50</td>
<td>1.7918</td>
<td>37.6269</td>
<td>36</td>
<td>756</td>
</tr>
<tr>
<td>9</td>
<td>22</td>
<td>198</td>
<td>2.44</td>
<td>2.1972</td>
<td>48.3389</td>
<td>81</td>
<td>1782</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>200</td>
<td>2.00</td>
<td>2.3026</td>
<td>46.0517</td>
<td>100</td>
<td>2000</td>
</tr>
</tbody>
</table>

a) Calcolo della media aritmetica, armonica e geometrica:

\[M(X) = \frac{\sum X * f}{\sum f} = \frac{759}{110} = 6.9000 \]

\[Ma(X) = \frac{\sum f}{\sum f/x} = \frac{110}{17.3} = 6.3421 \]

\[\ln(Mg(X)) = \frac{\sum \ln(X) * f}{\sum f} = \frac{207.6612}{110} = 1.8878 \]

\[Mg(X) = e^{1.6551} = 6.6050 \]

\[M_q(X) = \frac{\sqrt{\sum X^2 * f}}{\sum f} = \sqrt{\frac{5713}{110}} = 7.2067 \]

b) Calcolo della mediana e della moda:

X55° =< mediana =< X56°: me = 6

moda = 5

c) Calcolo della varianza:

\[V(X) = M(X^2) - m(X)^2 = \frac{5713}{110} - 6.9^2 = 4.3264 \]
ESERCIZIO 2

Utilizzare le formule del calcolo combinatorio per rispondere ai seguenti quesiti:

a) Quante parole, anche prive di significato, posso creare usando tutte le lettere contenute nella parola “MOUSE”?

Si tratta di un caso di Permutazione semplice di 5 elementi:

\[P_5 = 5! = 120 \]

b) E quante parole di 3 caratteri, anche ripetuti, posso creare usando solo le lettere contenute nella parola “MOUSE”?

Si tratta di un caso di Disposizione con ripetizione di 5 elementi presi in gruppi di 3:

\[D'_{5, 3} = 5^3 = 125 \]

ESERCIZIO 3

Lo schema da utilizzare è quello della v.c. Binomiale con parametri:

\[p = 0,12 \]
\[n = 4 \]

La distribuzione di probabilità quindi è la seguente:

<table>
<thead>
<tr>
<th>X</th>
<th>P(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,5997</td>
</tr>
<tr>
<td>1</td>
<td>0,3271</td>
</tr>
<tr>
<td>2</td>
<td>0,0669</td>
</tr>
<tr>
<td>3</td>
<td>0,0061</td>
</tr>
<tr>
<td>4</td>
<td>0,0002</td>
</tr>
</tbody>
</table>

Media = np = 0,48
Varianza = npq = 0,4224

ESERCIZIO 4 - LAB

CREO IL VETTORE DELLE X:
k=c(0:4)

CALCOLO I VALORI DELLA VARIABILE BINOMIALE:
dbinom(k, 4, 0.12)

DISEGNO IL GRAFICO DELLA DISTRIBUZIONE DI PROBABILITA':
barplot(dbinom(k,4,0.12), names.arg=k, xlab="X", ylab="P(X)")

ESERCIZIO 5 - LAB

CREO I VETTORI DEI DATI
dati=c(12, 11, 21, 15, 24, 15, 11, 10)

EFFETTUA IL TEST BILATERALE PER VERIFICARE LE IPOTESI:
H0: mu=15 H1: mu!=15
t.test(voti, mu=15, alternative="two.sided", conf.level=0.99)