
Lex: A Lexical Analyser Generator

Compiler-Construction Tools

The compiler writer uses specialised tools (in addition to those
normally used for software development) that produce components
that can easily be integrated in the compiler and help implement
various phases of a compiler.

Scanner generators

Parser generators

Syntax-directed translation

Code-generator generators

Data-flow analysis: key part of code optimisation

Constructing a Lexical Analyser

Problem:

Write a piece of code that examines the input string and find
a prefix that is a lexeme matching one of the patterns for all
the needed tokens.

A Simple Example

Example

Consider the following grammar:

Regular Definitions for the Language Tokens

Note that keywords if, then, else, also match the patterns for
relop, id and number.
Assumption: consider keywords as ‘reserved words’.

Tokens Table

Whitespace

The LA also recognises the ‘token’ ws defined by:

ws → (blank|tab|newline)

This token will not be returned to the parser; the LA will restart
from the next character.

Recogniser for relop

An Implementation

Recogniser for id

Recogniser for number

Recogniser for whitespace

Lex

The Lex compiler is a tool that allows one to specify a lexical
analyser from regular expressions.
Inputs are specified in the Lex language.

A Lex program consists of declarations %% translation rules %%
auxiliary functions.

Example

Example (ctd.)

Design of a LA Generator

Two approaches:

NFA-based

DFA-based

The Lex compiler is implemented using the second approach.

Generated LA

We show how o convert regular expressions to NFA’s and a
conversion of NFA’s into DFA’s. The NFA produced can then be
transformed into a DFA by meanns of the latter construction if
desired. It can also be used directly via a simulation following the
subset construction translation alorithm.

Constructing the Automaton

For each regular expression in the Lex program construct a NFA.

Simulating NFA’s

Example:

Pattern Matching

LA Based on DFA’s

	Running Example
	Design of a LA Generator
	From Regular Expressions to Automata

