
Advanced Compilers 10 L12: Garbage Collection

Memory Management
• Perfect

• Manual management

• Automatic garbage collection

live dead
not deleted ! −−−

deleted −−− !

live dead
not deleted ! " memory leak
deleted "" dangling pointers !

live dead
not deleted

deleted

Advanced Compilers 11 L12: Garbage Collection

Manual vs. Automatic

Manual Automatic

Languages C, C++ Lisp, Java, ML

Advantages performance no programmers’ effort
no dangling pointers
less memory leaks

Choice?

Advanced Compilers 12 L12: Garbage Collection

Performance Metric for Garbage Collectors

Advanced Compilers 13 L12: Garbage Collection

II. Reference Counting
• Free objects as they transition from “reachable” to

“unreachable”

• Keep a count of pointers to each object

• Zero reference -> not reachable
• When the reference count of an object = 0

• delete object
• subtract reference counts of objects it points to
• recurse if necessary

• Not reachable -> zero reference?

• Cost
• overhead for each statement that changes ref. counts

Advanced Compilers 14 L12: Garbage Collection

III. Why is Trace-Based GC Hard?
• Reasons

• Requires complementing the reachability set - that’s a large set
• Interacts with resource management: memory

Advanced Compilers 15 L12: Garbage Collection

Trace-based GC
• Reachable objects

• Root set: (directly accessible by prog. without deref’ing pointers)
• objects on the stack, globals, static field members

• + objects reached transitively from ptrs in the root set.
• Complication due to compiler optimizations

• Registers may hold pointers
• Optimizations (e.g. strength reduction, common subexpressions)

may generate pointers to the middle of an object
• Solutions

• ensure that a “base pointer” is available in the root set
• compiler writes out information

to decipher registers and compiler-generated variables
(may restrict the program points where GC is allowed)

Advanced Compilers 16 L12: Garbage Collection

Trace-Based GC: Memory Life-Cycle

unreachedfreeMutator runs
new

GC
Tracing

unreachedfree

scanned unscanned

found to be
reached

objects scanned
for new reachable objects

reached

GC
Done tracing

unreachedfree

scanned

Repeat until
unscanned = ∅

Advanced Compilers 17 L12: Garbage Collection

A basic GC: Mark and Sweep
• Data structures

• Free: a list of free space
• Unscanned: a work list
• A reach bit per object, set to 0 at the beginning

• Algorithm
• Put objects in root set in Unscanned, set their reach bit
• While Unscanned ≠ ∅

• remove object o from Unscanned
• scan o for newly reached objects

put in Unscanned, set their reach bit
• Free = ∅
• Sweep through heap space

• unset reach bit: put in Free
• otherwise: unset reach bit

• Cost
• Mark: visit all reachable objects; sweep: visit all objects

