
University of Verona

A.A 2016/2017

Laboratory of

Networked Embedded Systems

Lesson 3

Networked Embedded Systems Design

Enrico Fraccaroli

June 6, 2017

Contents

1 Introduction 2

1.1 Arduino Software . 3
1.2 Light Emitting Diode (LED) 4
1.3 Button . 5
1.4 Buzzer . 6
1.5 Temperature Sensor . 7
1.6 NRF24L01 Module . 9

1.6.1 Serial Peripheral Interface 9
1.6.2 Main Methods . 11
1.6.3 Experimental methods 12

2 Hardware platform for the Internet of Things 15

2.1 Required material . 15
2.2 Structure . 16
2.3 Mounting instructions . 17

2.3.1 Master . 17
2.3.2 Slave . 18

3 Sniffing Radio-Frequency communications 19

3.1 Required material . 19
3.2 Structure . 20
3.3 Background . 21

3.3.1 Packet structure . 22
3.3.2 How to simulate promiscuous mode 23
3.3.3 Packet sniffing mechanism 24
3.3.4 Packet dissection mechanism 24

4 Profiling communications devices power consumption 25

4.1 Required material . 25
4.2 Structure . 26
4.3 ACS712T . 27

1

Chapter 1

Introduction

This lessons consist of three scenarios:

1. The first concerns the use of two Arduino boards to transmit packets
by means of a Radio-Frequency (RF) board, namely the NRF24L01+.

2. The second concerns the sniffing of packets exchanged between two
nodes communicating via nRF24L01+ wireless modules. In this case we
are going to use the same configuration of the first scenario for the two
sniffed nodes.

3. The third concerns the analysis of the power consumption of the wire-
less module as a function of payload size and transmission power.

In the following there is a brief description of the software and components
required for the lesson.

2

1.1 Arduino Software

In order to use the Arduino board, download the Arduino IDE from

https://www.arduino.cc/en/Main/Software

How to run the IDE

In order to execute the IDE, use the file named arduino inside the down-
loaded package.

How to install libraries

In order to install a new library, you just need to click on

Sketch −→ Include Library −→ Manage Libraries

3

1.2 Light Emitting Diode (LED)

Figure 1.1: Led structure. Figure 1.2: Led setup.

As shown in Figure 1.1, a Light Emitting Diode (LED) comprises an an-

ode and a cathode. The former is connected to a voltage source (i.e.,
PIN 13 of Arduino) while the latter (i.e., the negative pole) is connected to
Ground. The setup shown in Figure 1.2 allows to operate the LED with an
Arduino.

Below you can see the commands to turn on and off a LED. During the
setup phase you have to set the pin number to which the LED is connected
and its type (i.e., INPUT or OUTPUT). To change the state of the LED,
use the digitalWrite command and pass the pin_number and pin_state.
Using HIGH will turn on the LED while LOW will turn it off.
✞ ☎

1 #define led0 13

2 int status = 0;

3 void setup () {

4 pinMode (led0 , OUTPUT);

5 digitalWrite(led0 , status);

6 }

7 void loop() {

8 if (status == LOW) status = HIGH;

9 else status = LOW ;

10 digitalWrite(led0 , status);

11 delay (200);

12 }
✝ ✆

4

1.3 Button

Figure 1.3: Schema of a button which controls a LED via software.

Figure 1.3 shows the button setup. First, it must be powered and thus it
must be connected to ground (i.e., GND) and to a potential source (i.e., VCC
of Arduino). Even though it has 4 pins, they are actually only two since the
pins on the same side are connected in series. A cable must be used to send
the signal from the button to the PIN 4 of the Arduino.

The button is an input device, during the setup phase you have to ini-
tialize the pin by setting it as INPUT pin. During the loop phase, the code
has to verify if the button is pressed by means of the digitalRead function.
This function indicates value 1 if the button is pressed and value 0 if the
button is not pressed.
✞ ☎

1 #define pinButton 4

2 #define pinLed 13

3 void setup () {

4 Serial .begin (9600);

5 pinMode (pinButton , INPUT);

6 pinMode (pinLed , OUTPUT);

7 }

8 void loop() {

9 if (digitalRead (pinButton) == 1) {

10 digitalWrite(pinLed , HIGH);

11 delay (1000);

12 digitalWrite(pinLed , LOW);

13 }

14 }
✝ ✆

5

1.4 Buzzer

Figure 1.4: Buzzer setup.

As shown in Figure 1.4, a buzzer must be connected to a power supply
(or an Arduino digital pin) and ground. During the Setup the buzzer is
initialize like a LED, that is with the pinMode(#buzzer, OUTPUT) command.
However, inside the loop function it must be used by means of the command
tone(#buzzer, 1000, 200), where #buzzer is the pin number to which
the buzzer is connected, 1000 is the frequency and 200 is the duration in
milliseconds.
✞ ☎

1 #define PIN_BUZZER 3

2 void setup (){

3 pinMode (PIN_BUZZER , OUTPUT);

4 }

5 void loop (){

6 tone(PIN_BUZZER , 1000, 200);

7 delay (500);

8 noTone (PIN_BUZZER);

9 delay (1000);

10 tone(PIN_BUZZER , 750, 300);

11 delay (500);

12 noTone (PIN_BUZZER);

13 delay (1000);

14 tone(PIN_BUZZER , 500, 400);

15 delay (500);

16 noTone (PIN_BUZZER);

17 delay (1000);

18 }
✝ ✆

6

1.5 Temperature Sensor

Figure 1.5: DALLAS DS18B20 sensor setup.

Schema

The DS18B20 can be powered with a voltage between 3.0V and 5.5V, thus
you can simply connect VDD to the 5V Arduino pin, as shown in Figure 1.5.
However, the DS18B20 can also extract its power from the data line, which
means it only needs two wires for the connection. This makes it ideal for
use as an external sensor. The GND pin must be connected to VCC and to the
ground pin of the Arduino. While the data line pin must be connected to a
digital pin of the Arduino (in this case pin 2). To power the component, the
data line pin must be connected to the VDD pin.

Code

The following libraries are required:

• DallasTemperature

• OneWire

The OneWire library is a specific library for certain sensor classes, to which
the Dallas Temperature sensor belongs.

7

The code required to acquire the temperature is the following:
✞ ☎

1 #include <DallasTemperature.h>

2 #include <OneWire .h>

3 #define ONE_WIRE_BUS 2

4 OneWire oneWire (ONE_WIRE_BUS);

5 DallasTemperature sensors (& oneWire);

6 void setup (void)

7 {

8 Serial .begin (9600);

9 sensors .begin ();

10 }

11 void loop(void){

12 sensors .requestTemperatures ();

13 Serial .println (sensors .getTempCByIndex (0));

14 }
✝ ✆

The line OneWire oneWire(ONE_WIRE_BUS) sets the oneWire communi-
cation mechanism, while DallasTemperature sensors(&oneWire) instanti-
ate the sensing library. Finally, by using the Sensors.begin(), the sensor
begins to acquire the temperature.

Inside the loop, two basic commands are used:

• Sensors.requestTemperatures()

– Sends a temperature request to the sensor.

• Sensors.getTempCByIndex(0)

– Acquires the temperature in Celsius.

8

1.6 NRF24L01 Module

Figure 1.6: Interface of NRF24L01.

The NRF24L01 module is powered by a voltage between 1.9V and 3.6V,
while the other pins can be controlled with 5V. Figure 1.6 shows the config-
uration of the NRF24L01 pins as follows:

GND The ground pin.

VCC The power supply.

CE The Chip Enable. Determines whether the module should be
placed in receiving or transmitting state.

CSN SPI Chip Select.

SCK SPI Clock. A clock signal used to synchronize the data transfer
through the serial bus.

MOSI SPI Master Out Slave In. A line leaving the master and entering
the slaves.

MISO SPI Master In Slave Out. An input line leaving the slave and
entering the master.

IRQ Interrupt.

1.6.1 Serial Peripheral Interface

Serial Peripheral Interface (SPI) is a synchronous serial data protocol used
by micro-controllers for communicating with one or more peripheral devices
quickly over short distances. It can also be used for communication between
two micro-controllers. With an SPI connection there is always one master
device (usually a micro-controller) which controls the peripheral devices.

9

Schema

Figure 1.7: NRF24L01 schema.

The GND and VCC pin of the module should be connected respectively to
the GND and 3.3V pins of the Arduino.

Be Careful

Do not connect the module to the 5V voltage supply, it is too high.

The CE pin and the CSN pin can be connected to any digital pin as they
are configured via software, in this case the digital pins 7 and 8. The SCK,
MOSI and MISO pins are default as they are used for SPI Communication:
pin 11 (MOSI), pin 12 (MISO), pin 13 (SCK). These support pins are used
by the SPI library, used by the RF module. IRQ is not used in this scenario.

10

1.6.2 Main Methods

Constructor

✞ ☎
RF24 (uint8_t cePin , uint8_t csPin)
✝ ✆

Instantiate the Radio Frequency (RF) module manager.

• cePin: Pin connected to the RF Module Chip Enable;

• csPin: Pin connected to Chip Select.

Setup

✞ ☎
RF24:: begin (void);
✝ ✆

Configures the module created with the constructor. This command is placed
inside the setup phase and must be called before any other command of the
module.

Writing pipe

✞ ☎
RF24:: openWritingPipe (uint64_t address)
✝ ✆

Opens the pipe in write mode. The pipe is specified by the 40-bit hexadecimal
address address.

Reading pipe

✞ ☎
RF24:: openReadingPipe (uint8_t number , uint64_t address)
✝ ✆

Opens the pipe in read mode.

• number: the pipes number, ranging from 0 to 5, the pipes from 1 to 5
share the first 32 bits, the pipe 0 is usually used as writing pipe.

• address: The 40 bit address of the pipe to open.

Start listening

✞ ☎
RF24:: startListening (void)
✝ ✆

Starts listening to open pipes in read mode. Make sure that the
openReadingPipe() function is called. You can not call the write function
if you have not called the stopListening() function before.

11

Stop listening

✞ ☎
RF24:: stopListening (void)
✝ ✆

Stops listening for incoming messages. This must be called before a write.

Write data

✞ ☎
RF24:: write (const void * buf , uint8_t len)
✝ ✆

Writes on the open writing pipe. First, make sure that the openWritingPipe()
function has been called.

• Buf: pointer to the data to send

• Len: number of bytes to send

It returns True if the data has been sent, False otherwise.

Check for incoming data

✞ ☎
RF24:: available ()
✝ ✆

Checks if there are bytes available to read. It returns True if there is an
incoming stream of data, False otherwise.

Read incoming data

✞ ☎
RF24:: read (void * buf , uint8_t len)
✝ ✆

Reads incoming data and returns the last received data.

• Buf: buffer pointer where the data was written

• Len: maximum number of bytes to read in the buffer

It returns True if the data was successfully delivered, False otherwise.

1.6.3 Experimental methods

The methods listed below can be used to set different chip configurations.

12

Change communication channel

✞ ☎
RF24:: setChannel (uint8_t channel)
✝ ✆

Sets the RF communication channel.

• channel: Which RF channel is used to communicate. It allows to select
a value from 0 to 127.

Change payload size

✞ ☎
RF24:: setPayloadSize (uint8_t size)
✝ ✆

This deployment usually utilizes a premium payload size for all transmissions.
If the method is not called, the device transmits to the maximum payload
size, or 32 bytes.

Change power amplifier level

✞ ☎
RF24:: setPALevel (rf24_pa_dbm_e level)
✝ ✆

Sets the power amplifier level in one of four levels:

RF24_PA_MIN -18 dBm
RF24_PA_LOW -12 dBm
RF24_PA_MED -6 dBm
RF24_PA_HIGH 0 dBm

Change transmission speed

✞ ☎
RF24:: setDataRate (rf24_datate_e speed)
✝ ✆

Sets the transmission speed at one of three speeds:

RF24_250KBPS 250 Kbs
RF24_1MBPS 1 Mbps
RF24_2MBPS 2 Mbps

13

Warning

All the communications must have the same:

• Transmission Speed;

• Channel;

• Payload Size.

14

Chapter 2

Hardware platform for the

Internet of Things

This scenario concerns the use of two Arduino boards to transmit packets
through the use of a Radio-Frequency (RF) board, namely the NRF24L01.

The project is a temperature measurement system which notify with an
acoustic alarm if the temperature levels cross an upper-bound. A set of two
LEDs (i.e., Red and Green) allows the user to know if the temperature is
getting near the upper-bound.

Thus, the following information are provided to the user:

GREEN LED the temperature is low.
RED LED the temperature is rising.

SOUND the temperature has crossed the upper-bound.

2.1 Required material

• 2 x Arduino Uno

• 2 x Prototyping Board

• 2 x NRF24L01 Module

• 1 x Red LED

• 1 x Green LED

• 1 x Switch

• 1 x Buzzer

• 1 x Temperature Sensor (DALLAS1820)

• 4 x Resistor 390Ω

15

2.2 Structure

The structure of the project is depicted in Figure 2.1 and it comprises two
setups:

1. The first comprises an Arduino, a NRF24L01 module, two LEDs and
a button. This setup has the role of Master.

2. The second is made up of an Arduino, a NRF24L01 module, a DAL-
LAS18B20 temperature sensor, and a buzzer. This setup has the role
of Slave.

The node to which the button is connected is considered as a master.
Whenever the user presses the master’s button, a request is sent to the
slave. The request is the temperature measured at the place where the
slave is deployed. Once the temperature is received by the master, it is
displayed on the serial monitor of the Arduino. The time elapsed from the
request to the response is shown along with the temperature, expressed in
milliseconds.

However, if the time elapsed exceeds a threshold (i.e., it takes too long
to be received), the value is discarded since it cannot be considered as valid
and an error message is shown.

Arduino

Button

L1 L2

NRF24L01 Arduino

Sensor

NRF24L01

Buzzer

Figure 2.1: Temperature monitoring structure.

16

2.3 Mounting instructions

2.3.1 Master

Figure 2.2: Master node configuration.

Whenever the button is pressed, the master node sends a request to the
slave node for the current temperature value. Based on the temperature
value supplied by the slave, the LEDs turn on for about 2 seconds. On
each transmission, along with the request/response, the time at which the
packet is send is provided. Thus, a structure with both time and temperature
values is created and used during the communication. The current time value
is acquired by means of the micros() function, which returns the number
of microseconds since the Arduino started running the program. Once the
slave has received the request and the time-stamp, it updates the acquired
temperature value inside the packet and then send it back to the master. The
master receives the packet and evaluates the elapsed time by using the stored
value inside the packet and the aforementioned function. If the elapsed time
is not above a pre-determined threshold, the packet is displayed on the serial
monitor.

17

2.3.2 Slave

Figure 2.3: Slave node configuration.

The slave node waits the requests from the master. However, if the tem-
perature is too high, a buzzer is activated every 2 seconds, until the temper-
ature returns to normal.

18

Chapter 3

Sniffing Radio-Frequency

communications

The objective of this scenario is to intercept the packets exchanged between
two nodes communicating via nRF24L01+ wireless modules.

The two nodes are part of a project with the purpose of detecting and
transmitting the temperature on an explicit request. We are going to intro-
duce an external node, which will attempt to intercept the packets trans-
mitted between the other nodes. However, the sniffer needs to know some
configuration parameters of the two nodes, such as the transmission channel,
the data rate and the base address of the communication pipe.

3.1 Required material

• 3 x Arduino Uno

• 2 x Prototyping Board

• 3 x NRF24L01 Module

• 1 x Red LED

• 1 x Green LED

• 1 x Switch

• 1 x Buzzer

• 1 x Temperature Sensor (DALLAS1820)

• 4 x Resistor 390Ω

19

3.2 Structure

Figure 3.1: Sniffer node configuration.

20

3.3 Background

The Nordic Semiconductor nRF24L01+ card operates at 3.3V voltage and
transmits on channels at a frequency of 2.4GHz, which is used by common
WiFi radios. Packets transmission can take place in two ways:

• Regular Packet: The payload size is defined a priori inside the code;

• Enhanced Shockburst: It has the ability to use dynamic payloads,
identify ACK packets and Auto-ACK functionality.

This chip does not support promiscuous mode, which would normally allow
you to detect all kind of network traffic. However, the difference between
the two supported modes can be used to our advantage, albeit with some
limitations.

21

3.3.1 Packet structure

The first part of the header of the packet transmitted by both the aforemen-
tioned modes are identical. In particular it has the following structure:

• A 1-byte preamble is used to identify nRF24 packets;

• Address, length from 3 to 5 bytes, to specify the destination address.

In Regular Mode, this header is immediately followed by a payload, of
length to be defined in the code, between 0 and 32 bytes. In both modes,
a section dedicated to the CRC is provided at the end of the packet. This
CRC is used to check the integrity of the data and it has a fixed length which
varies between 0 and 2 bytes.

Preamble Address Payload CRC

1 byte 3-5 byte 0-32 byte 0-2 byte

The Enhanced Shockburst mode provides the ability to send payloads
with dynamic length. Its header contains three other fields which are not
byte-aligned, defined as follows:

• Payload length: 6 bits used to specify the payload length, which will
always be limited to 0 to 32 bytes;

• 2-bit PID (Packet Identifier): Used to number packets, useful for de-
tecting retransmissions;

• NO_ACK : 1 bit flag which is set to 1 if the packet does not provide a
acknowledge in response.

Preamble Address Payload Length PID NO_ACK Payload CRC

1 byte 3-5 byte 6 bit 2 bit 1 bit 0-32 byte 0-2 byte

22

3.3.2 How to simulate promiscuous mode

The two master and slave nodes use the Enhanced Shockburst mode.
Because the nRF24L01+ chip does not support promiscuous mode, you need
to find a way to simulate it by using the two aforementioned modes. The
Enhanced Shockburst mode differs from the regular one only for some
additional fields in the header. You can set the sniffer to detect Enhanced

Shockburst packets as if they were regular packets, by “embedding” the
three additional sections and the variable part of the address (which will be
interpreted as a specific node address) inside the payload.

Preamble
Base

Address

Node

Address

Payload

Length
PID NO_ACK Payload CRC

1 byte 4 byte 1 byte 6 bit 2 bit 1 bit 0-32 byte 0-2 byte

↓ ↓ ↓ ↓ ↓ ↓

Preamble Address Payload

1 byte 4 byte 0-32 byte

In order to do this, you need to change the sniffer code:

• Specify the length of the address field to limit it to the base address
length (the initial part of the address, shared between all nodes);

• Disable Enhanced Shockburst mode;

• Disable CRC parity check;

• Set a fixed length payload.

The first three points are required to “mask” and therefore to handle the
packets transmitted by means of the Enhanced Shockburst. The last point
is required in order to specify the size of the data we need to read, since the
sniffer works in Regular Mode. The CRC control needs to be disabled.
The sanity check will always fail since the payload size of all packets is not
known a priori. The address of the two communicating nodes must maintain
a format compatible with this mode. Thus, the 4 leftmost bytes are dedicated
to the base address while the rightmost ones is reserved to the identification
of the node.

As you can see, the first limitation appears to be the payload length.
In Regular Mode, however, the payload is limited to a maximum size of
32 bytes, and it must be able to contain (besides the actual payload) the
additional fields included in it (node address, payload length, PID, NO_ACK
and CRC), which then limits the available space for the actual payload.

23

3.3.3 Packet sniffing mechanism

The nRF24L01+ must be configured with the appropriate parameters which
are known a priori, namely: the base address, its length (in addition to
that of the node address), the channel, the data rate, the maximum pay-
load length. Furthermore, the CRC control must be deactivated. This is
done by the function activateConf(), which also sets the interrupt handler,
handleNrfIrq().

The wireless module receives a packet and sends an interrupt request
to the dedicated digital pin, which in our configuration is connected to
the Arduino to handle this request. Whenever the interrupt handler is
called, it has to wait for packets corresponding to the configuration (via
the radio.available()). When it receives a packet (through the function
Radio.read ()), it inserts the packet inside a circular buffer used to store
the received data. At each primary loop iteration, the data inside the buffer
is provided to the packet dissector and the buffer is emptied. When the buffer
is full, any received packet is considered as lost and a counter is incremented.

3.3.4 Packet dissection mechanism

The packet contained in the buffer is actually an array of byte. Each sniffed
packet is passed to a dissect() function which identify its fields, align them
to the byte, rearrange and decode them to obtain legible data. For what con-
cerns the node address packet sections, payload length, PID, NO_ACK, and
CRC, an alignment and subsequent printing are performed. For what con-
cerns the Payload, it is stored inside the buffer as Little-Endian, thus it must
be first converted to Big-Endian. Then, the raw data is splitted and con-
verted into the actual data which wre originally contained inside the packet.
Once the alignment and conversion are completed, the various sections of the
package are printed, both in binary and human-readable format.

24

Chapter 4

Profiling communications devices

power consumption

The objective of this scenario is to analyze the power consumption of the
wireless module as the payload size, transmission power and distance change.
Follows the different scenarios:

• Vary the payload size (from 1 to 32 bytes) keeping the transmission
power and the distance between the two nodes unchanged;

• Vary the transmission power at the same distance (about 30 cm) and
payload size (32 bytes).

4.1 Required material

• 3 x Arduino Uno

• 2 x Prototyping Board

• 2 x NRF24L01 Module

• 1 x Red LED

• 1 x Green LED

• 1 x Switch

• 1 x Buzzer

• 1 x Temperature Sensor (DALLAS1820)

• 4 x Resistor 390Ω

• 1 x Current sensor ACS712T-ELC-30A

25

4.2 Structure

Figure 4.1: Current sensor node configuration.

This scenario make use of the Master and Slave nodes of the previous
scenarios, appropriately modified so that they periodically transmit data.
The current measurement is performed on the wireless card of the slave node.

Concerning the changes made to the master node, the button control has
been bypassed and a two second delay has been added to the main loop.
The sensing Arduino reads the analog value from the pin A0, converts it into
Amperes and prints it on the serial port.

26

4.3 ACS712T

The ACS712T-ELC-30A current sensor make use of the Hall effect, i.e. the
formation of a potential difference perpendicular to the current in the pres-
ence of a magnetic field.

Figure 4.2: Closed loop hall effect current sensor.

This potential difference is returned to the analog OUT pin, which will
be connected to an analogue pin of an Arduino card. The sensor is placed
in series with the user in order to measure the current of the circuit. The
output data, being a potential difference proportional to the current and thus
an analog data, needs a special conversion to be expressed in amperes.
The formula is

I =
offset− (input ∗ V CC

1024
)

sensitivity
(4.1)

where

• offset represents the output voltage in the absence of current;

• VCC is the operating voltage (5 volt);

• 1024 is a constant representing the voltage “steps” detectable by the
analog pin;

• sensitivity is the proportional constant that binds the measured current
to the potential difference detected at the OUT pin.

27

That’s all folks

	Introduction
	Arduino Software
	Light Emitting Diode (LED)
	Button
	Buzzer
	Temperature Sensor
	NRF24L01 Module
	Serial Peripheral Interface
	Main Methods
	Experimental methods

	Hardware platform for the Internet of Things
	Required material
	Structure
	Mounting instructions
	Master
	Slave

	Sniffing Radio-Frequency communications
	Required material
	Structure
	Background
	Packet structure
	How to simulate promiscuous mode
	Packet sniffing mechanism
	Packet dissection mechanism

	Profiling communications devices power consumption
	Required material
	Structure
	ACS712T

