Bolchini Ferrandi Fummi

Contents -1

> Built-in Types, Operators and Expressions
> Structural VHDL

> Signals

> Components

> Netlist

> Dataflow VHDL

= Concurrent statements
> Behavioral VHDL

> Variables

> Sequential Statements

Bolchini Ferrandi Fummi

Contents -2

> Advanced Topics
> User Defined Types
> Subprograms
> Resolution Functions
> Attribute
> File

Bolchini Ferrandi Fummi

Built-in Types

> Types determine the values an object can
assume and operations that can be
performed on it.

> Packages STANDARD and IEEE provide
several data types and operators.
> Scalar types
> Array types

Bolchini Ferrandi Fummi

Built-in Scalar Types

> real: -1.0E-38 to +1.0E+38.

> integer, positive and natural (32 bit).

> boolean: false, true.

> character: ‘a’, ‘b’, ‘c’,

> bit: ‘0", ‘1",

> time: number plus physical unit (fs, ps, ns, us, ms,
sec, min, hr)

> std_logic: ‘U’, ‘X', ‘0, ‘'1’, ‘Z', 'W’, ‘'L, ‘H’, *~

Bolchini Ferrandi Fummi

IEEE Standard Logic

Objects defined in package IEEE are “visible” when:
Library IEEE;
Use IEEE.STD_LOGIC_1164.all;

Y

> There are two versions std_logic and std_ulogic.
std_ulogic is the unresolved version of std_logic.

> U: unitialized > W: weak unknown
> X: forcing an unknown > L:weak O

> 0: forcing O > H: weak 1

> 1: forcing 1 > -2 don'’t care

Y

Z: high impedance

Bolchini Ferrandi Fummi

Built-in Array Types

> String: “hold time error”.
> Bit_Vector: “0000_0100".
» Std_Logic_Vector: “1012”

> Sometime it can be necessary to explicitly
provide the type name. For example:
> string’(“10")

@ualified expressiorD

Bolchini Ferrandi Fummi

Names- ldentifier

> All names must begin with an alphabetic letter (a-
z), followed by a letter, an underscore, or a digit.
> VHDL is case insensitive (xyz xYZ).
> Two different objects cannot have the same name.
> Elements requiring unique names are:
> Two entities in a library.
> Two architectures of a single entity.
> Two processes within the same architecture.

Bolchini Ferrandi Fummi

Range Constraint

> A range constraint declares the valid values
for a particular type.

integer range 1 to 10;

/\ range_constraint
range index_constraint
index_constraint
{low_val to high_val | high_val downto low_val}

Bolchini Ferrandi Fummi

Expressions

> An expression is a formula that uses operators and
defines how to compute or qualify a value.

> Operands must be of the same type. Type
conversion can be done through conversion

functions or by using qualified expressions:
integer(3.0)
signed’("1010")

> There are four kinds of operators:
> |ogical > arithmetic

> relational > concatenation

10

9Juspadald

Logic operators and Logical And
or Logic Or
nand Complement of And
nor Complement of Or
xor Logical Exclusive Or
Relational operators = Equal
= Not Equal
< Less Than
<= Less Than or Equal
>= Greater Than or Equal
Concatenation operator & Concatenation
Arithmetic operators + Addition
W - Subtraction

Bolchini Ferrandi Fummi

Operators -1

11

Operators -2

Bolchini Ferrandi Fummi

L
Arithmetic operators + Unary Plus
- Unary Minus
a) Arithmetic operators * Multiplication
5 / Division
& mod Modulus
g rem Remainder
B Arithmetic operators *x Exponentiation
abs Absolute Value
Logical operator not Complement

<<

12

Bolchini Ferrandi Fummi

New VHDL'92 Operators

> sll: shift left logical

> sla: shift left arithmetic
> rol: rotate left

> Xnor: exclusive nor

> ror : rotate right

> slr: shift right logical

> sla: shift right arithmetic

13

Bolchini Ferrandi Fummi

Objects Declaration

> Each element of a VHDL description must
be declared before its use.

> The only exceptions regard index of loops
that can be an integer values only.

» Elements to be declared are:

> constants > architectures
> signals > components
> entities > variables

14

Bolchini Ferrandi Fummi

Constant Declaration

> A constant is a name assigned to a fixed
value.

> Generally, constants increase readability.

A constant_declaration

constant name: type := expression;

constant name:array_type[(index_constraint)] := expression;

> Examples:

constant Vdd: Real := -4.5;
constant FIVE: std_logic_vector(8 to 11) := "0101";

15

Bolchini Ferrandi Fummi

Signal Declaration

> Signals connect design entities and communicate
changes in values between processes.

» The default initial value is the lowest value of the

associated type, if not specifiee
A signal_declaration m

signal names: type[range_constraint] [:= expression];
signal names:array_type[(index_constraint)] [:=expression];
Examples:

signal count: integer range 1 to 50;
signal SYS_BUS: std_logic_vector(7 downto 0);

signal bogus: bit_vector; @

16

Bolchini Ferrandi Fummi

Entity Declaration -1

> Design entities are used to represent VHDL models.

> They have a declaration part that defines the interfag
between the model and its environment.

> They have also a body that describes the relations
between inputs and outputs of the model
> The model body must follow its entity declaration.

> The entity declaration is mandatory but the architecture nof.

> The distinction between entity and architecture allows the

definition of more than one architecture for the same entityj.

17

e

Bolchini Ferrandi Fummi

Entity Declaration -2

A entity _declaration
entity entity_name is
[generic ({names: type[:= expression]})];
[port ({names: direction type[:= expression]});]
end [entity_name];

> Ports identifiers are used to interface the design

entity with the environment:
> IN: data enter into the design entity.
> OUT: data come from the design entity.

> INOUT: data enter into and come from the design
entity.

18

Bolchini Ferrandi Fummi

Entity Declaration -3

= Example: nor_gate
entity nor_gate is bit
generic (delay: time := 5 ns); a —> bit
port (a,b: in bit; b 5
c: out bit); bit
end nor_gate; ﬁ
> a andb can only receive values. delay

> C produces the result of the computation.

> delayis a constant value that can be used into the
architecture body. It assumes the value b it
Is not assigned.

19

Bolchini Ferrandi Fummi

Architecture Declaration-1

> An architecture design unit specifies the
behavior, interconnections, and components
of a previously compiled entity.

> |t specifies the relationships between the
inputs and outputs.

A architecture_declaration
architecture architecture_name of entity_name is
[declarations]
begin
concurrent_statements
end [architecture_name];

20

Bolchini Ferrandi Fummi

Architecture Declaration-2

> Example:

architecture dataflow of nor_gate is
begin

¢ <= a nor b after delay;
end dataflow;

> There are three architecture styles:

> Behavioral defines a sequentially described
process.

> Dataflow. implies a structure and a behavior.

> Structural defines interconnections of
components.

21

Bolchini Ferrandi Fummi

Structural VHDL

> Structural style is similar to a netlisting
language in other CAD systems.

22

Bolchini Ferrandi Fummi

Components -1

= Component declaration and instantiation
allow the structural kind of VHDL
description.

> Components must leclared specified
andinstantiatedfor their use.

A component_declaration
component component_name
port ({names: direction type[:= expression]})
end component ;

23

Bolchini Ferrandi Fummi

Components -2

> Example:
entity rsflop is
port(set,reset: in bit;
g,gbar: inout bit);
end rsflop;
architecture netlist of rsflop is
component nor2
generic(delay: time);
port(a,b: in bit; c: out bit);
end component;

end netlist;

24

Bolchini Ferrandi Fummi

Components -3

> The component configuration statement allows the
specification of the selected architecture related to
the declared component.

> |f no architecture is specified, tlkefault
architecture is selected.

A configuration_specification
for names: comp_name use entity ent_name(arch_name);

> Local names after tHeOR statement specify the
number of instantiated components.

= Example:

for ul,u2: nor2 use entity nor_gate(dataflow);

25

Bolchini Ferrandi Fummi

Components -4

AN component_instantiation
label : component_name portmap ([named|positional]);

» Example:
U1: nor2 generic map (10.2 ns)

port map(reset, gbar_int,q_int);
port map(b => gbar_int, ¢ => g_int, a => reset);

> The local port names (reset, gbar_int, g_int) are
put in relation with the formal names (a, b, c).

> The generic value 10.2 ns overrides the default
value 5.0 ns.

Bolchini Ferrandi Fummi

Components -5

= Example:
architecture netlist of rsflop is
for ul,u2: nor2 use entity nor_gate(dataflow);
signal g_int, gbar_int: bit;
begin
Ul: nor2
generic map (10.2 ns)
port map(reset, gbar_int,q_int);
U2: nor2
generic map (10.3 ns)
port map(qg_int, set, gbar_int);
g <=g_int;
gbar <= gbar_int;
end netlist;
27

Bolchini Ferrandi Fummi

Generate Components -1

A generate_components
label : for parameter in range generate

component_instantiation
end generate

> Example
genl: foriin O to 3 generate
U: dff port map (x(i), clk, x(i+1));
end generate;

X(©) X(1) X© X(3) X(4)

CLK

28

Bolchini Ferrandi Fummi

Generate Components -2

> NestedGENERATEare allowed for bi-
dimensional arrays.

» Internal label must not be indexed.

> Some customization can be done with the
if_generatestatement.

29

Bolchini Ferrandi Fummi

Dataflow VHDL

> A set of VHDL statements is concurrently
executed whenever they are placed into an
architecture body.

> There are different versions of the same statement
if it is executed concurrently or sequentially.

> Concurrent statements are:

Signal assignment > Block statement

Conditional signal assignment Procedure call

> Selected signal assignment > Assertion statement

> Instantiation statement > Process statement

Y

Y

30

Bolchini Ferrandi Fummi

Signal Assignment -1

/\ signal_assignment
signal_name <=value;

> Examples:
architecture probe of halfadder is
begin (With or without delays:)
sum <= a xor b; sum <= a xor b after 5 ns;

carry <= a and b; carry <= a and b after 10 ns;
end probe;

> Array values assignment:
bus_out(4) <= data(5);
rotate_sig(7:0) := sig(0:7);

31

Bolchini Ferrandi Fummi

Signal Assignment -2

> Aggregation

> Positional association:
SIGNAL z_bus : bit_vector (3 DOWNTO 0);
SIGNAL a_hit, b_bit, c_bit, d_bit : bit;

z_bus <= (a_bit, b_bit, c_bit, d_bit);

» Named association:
z_bus <= (2 =>b_bit, 1 => c_hit, 0 => d_bit; 3 => a_bit);

> Others keyword:
z_bus <= (3 DOWNTO 2 =>'1', OTHERS =>'0');
z_bus <= (OTHERS =>"'1");
z_bus <= (2 =>b_bit, 1 => c_hit, 0 => d_bit; 3 => a_bit);

32

Bolchini Ferrandi Fummi

Conditional Signal Assignment-:

A conditional_assignment

signal_name <= expression_1 WHEN condition_1 ELSE
expression_2 WHEN condition_2 ELSE

expression_N;
> equivalent tdF / THEN / ELSE / END IF
> Each condition is a boolean expression.
> The expression of thigst TRUE condition is assigned.
> There must balwaysan ELSE expression,

> The expression may be delayed.
a<='l'AFTER 2 ns WHEN b ='0' ELSE
'0' AFTER 3 ns;

33

Bolchini Ferrandi Fummi

Conditional Signal Assignment-

> Example:

ENTITY tri_state IS
PORT(bit_1, en_1, en_2: IN std_logic;
bus_1: IN std_logic_vector (0 TO 7);
tri_bit: OUT std_logic;
tri_bus: OUT std_logic_vector (0 TO 7));
END tri_state;
ARCHITECTURE condition OF tri_state IS
BEGIN
tri_bit<= bit_ 1 WHEN en_1 ="1' ELSE 'Z};
tri_bus <= bus_1 WHEN en_2 ="'1' ELSE (OTHERS =>'Z),
END condition;

34

Bolchini Ferrandi Fummi

Selected signal assignment

/\ Selected signal assignment
with expression select
sighal_name <= expression_1 when choice_1,

expression_n when choice_n;

> equivalent tacCASE / WHEN / END CASE

» All choices must be included unless MEHERS
keyword is used.

> A range may be used for a choice.

> Example

with B select
7<= 1" when "00" | "01",
‘0" when others;

> No overlapping in the choices is accepted.

35

Bolchini Ferrandi Fummi

Block statement -1

> Conventional blocks represent a way to
group any combination of concurrent
statements that may appear into an
architecture.

> Blocks may contain further blocks thus
implying an hierarchy.

> Items declared within a block are only
visible inside it.

36

Bolchini Ferrandi Fummi

Block statement -2

/\ block_statement
[label:] block [(guard_condition)]
[declarations]
begin
concurrent_statements
end block [label];

> Signals, constants, procedure, etc. may be declare
into a block.
> The guard condition must return a Boolean value:

it controlsguarded signal assignmenisthin the
block.

37

Bolchini Ferrandi Fummi

Guarded Block

> Whenever the guard condition evaluates to FALSE
the driver to anyguarded signals switched off.

= Example:

g_sig_es: block (clk ='1") R
sig_out <= guarded sig_in; g_proc_es : block (clk ='1")
. end block g_sig_es ; equiv : process
. . begin
“'no_g_proc:PROCESS(clk) k if guard then
begin sig_out <= sig_in;
if(clk ='1) then end if:
sig_out <= sig_in; wait on guard ;
end if; end process equiv;
end process no_g_proc; , end block g_proc_es ;

38

Bolchini Ferrandi Fummi

Assertions -1

> Provide a method to communicate results,errors,

A assertions_declaration
assert condition report string severity level,

> If the conditionis FALSEthe string is displayed on the
simulator screen.
> Severity levels allow different kinds of simulation abort.
They may be:
> note, warning, error, failureléfaultis error)
> The concurrent ASSERT statement monitors the Boolean
condition continuously.

> Assertions are used to debug the code or to provide

information about the simulation.
39

Bolchini Ferrandi Fummi

Assertions -2

#d_latch : PROCESS (clk,d)
BEGIN

IF(cIKEVENT and clk="1") THEN . j
q<=d: @uentlal assertion

ASSERT d'STABLE (setup_time)
REPORT "Setup violation ..."
SEVERITY warning;

END IF;
END PROCESS d_latch ; @Current assertioB

£'d_latch : BLOCK (clk = '1)

{ g <= GUARDED d;

ASSERT clkEVENT and clk ='1" and d'STABLE(setup_time)
REPORT "Setup violation ..."

i SEVERITY warning;

i, END BLOCK d_latch;

40

Bolchini Ferrandi Fummi

Behavioral VHDL

> Describe an architecture in a program-like style.
> Process statement

> A set of VHDL statements is sequentially
executed whenever they are placed into process.

» Signal assignment > Function call

> Variable assignment » Branches

> Wait > Control flow

> Procedure call > Assertion writes messages

NOTE: underlined statements are also concurrent statements|.

41

Bolchini Ferrandi Fummi

Variable Declaration

/\ variable_declaration
variable names: type[range_constraint] [:= expression];

variable names:array_type[(index_constraint)l[:=expression];

> Declaration examples:

variable sum : real;

variable voltage : integer := 0;

variable clock : bit :="1";

variable data : std_ulogic; < initial value?

> Arrays:
variable data_bus : bit_vector (0 to 7) :="11111111";

variable inputs : std_ulogic_vector (15 downto 0);

42

Bolchini Ferrandi Fummi

Signals and Variables -1

> Declaration place:
> Signals can be declared only between the
ARCHITECTUREstatement and iBEGIN
(declarative part of the architecture).
> Variables can be declared only between the
PROCESStatement and iBEGIN
(declarative part of the process).
> Default value:

> Both objects assume the left-most or minimum
value of the corresponding type.

43

Bolchini Ferrandi Fummi

Signal vs.Variable Assignment-]

> Signal and variable assignments are performed by
using different symbols to emphasize the different

meaning of the two objects.

A variable_assignment
variable_name := value;

/\ signal_assignment
signal_name := value;

> Note that the assignment of the initial value to a
signal uses the same symbol of variable
assignment.

a4

Bolchini Ferrandi Fummi

Signal vs.Variable Assignment-Z

» The main difference is the nature of the
assignment:

> Signal assignment. concurrent statement
> Variable assignment sequential statement
> Such a difference implies some other differences:

> Variables can be assigned only in the sequential part of
a VHDL description (into a process statement)

> Signals can be assigned in the sequential or concurrent
part.

> A variable assignment takes effecimediately
> A signal assignment may depend athetay.

45

A4

Bolchini Ferrandi Fummi

Signal vs.Variable Assignment-:

var_ex: PROCESS SIGNAL num, sum: INTEGER:=0;
VARIABLE num,sum:INTEGER:=0; sig_ex: PROCESS
BEGIN

BEGIN
WAIT FOR 20 ns; WAIT FOR 20 n;
num := num + 1, num <= num + 1;
sum := sum + num;

sum <= sum + num;
END PROCESS var_ex;

END PROCESS sig_ex;

* The two processes are apparently equal, but ...
* Do they produce the same result?

» NO! Signals and variables are updated at
different times.

46

L=~

/\ process_statement

Bolchini Ferrandi Fummi

Process -1

» |t IS a concurrent statement that delineates a
set of sequentially executed statements.

[label:] process [(sensitivity_list)]
[declarations]
begin

sequential_statements
end process [label] ;

47

Bolchini Ferrandi Fummi

Process -2

> Thesensitivity listis a list of signals. The
change of one or more of such signals
causes the process to be activated.

> Alternatively the WAIT statement may
control the execution of a process.

> Thesensitivity listand theWAIT statement
are mutually exclusive.

48

Bolchini Ferrandi Fummi

Process -3

> Comparison

-, { wait_style_proc: PROCESS

"sens_list_style_proc: s
! PROCESS (alarm_t, current_t) IF (alarm_t = current_f)
i IF (alarm_t = current_t) THEN

THEN sound <=1,

sound <="'1" ELSE

ELSE : .
sound <='0"; sound <=0’
', END PROCESS: WAIT on alarm_t, current_t;

“END.PROCESS Wait.. Styl6. {E0C-rwrrerrsrrrr” g
> Both processes show the same behavior.

> Signals in the sensitivity list help the reader to understand
the behavior of the process.

> Multiple WAIT statements may represent a more complex

behavior.
49

Bolchini Ferrandi Fummi

Process -3

> Execution:

> Every process is executed once in the
initialization phase.

- a process based on the sensitivity list runs until its
last instruction;

~ a process based on the wait keyword runs until the
first wait.

> A process is restarted when a signal in the
sensitivity list or in the wait statement changes.

50

Bolchini Ferrandi Fummi

Process -4

> A process is considered asJAIQUE
concurrent operation.

> Signals of a process are all updated at the
end of the process execution.

> All internal operations are sequentially
executed, thus only sequential operators car
be used.

51

Bolchini Ferrandi Fummi

Walit -1

> Provides the control of the process execution.
O\ wait ;
> suspends a process indefinitely (useful in test benches).
/\ waitfor time;
> suspends a process for time units (useful in test benches
and behavioral models).
A waiton signal_list;
> suspends a process until a change occurs on one or more
the signals in the list (it is equivalent to the sensitivity list).
A wait until condition;
> suspends a process until a change occurs on one or more
the signals in the condition and it evaluates to TRUE.

52

Bolchini Ferrandi Fummi

Walt -2

> Examples:)) _
| semantically equivalent to:
{ d_ff_1:process wait until clk="1",
... i begin :
s'stimuli : process A wait until clk'event and clk="1";
begin Pog<=a;
en_1<="0 { end process d_ff_1;
en_2<="'1} ’
wait for 10 ns;
en_1<="1, .
en_2<="04 { d_ff_2: process begin
waitfor 10 ns; i if clk="1'then
en_1<="04 i g<=d;
wait ; i oendif;
.end process stimuli ; waiton clk;

i end process d_ff 2;

53

of

of

Bolchini Ferrandi Fummi

Branches -1

A if_statement

if condition then sequential_statements
{elsif condition then sequential_statements}
[else sequential_statements]
end if
> Example:
counter: process (clk, reset)
begin

if reset = '1' then

count <="0";

elsif clk'event and clk = '1' then
if count >= 9 then
count <="'0%;
else
count <= count + 1;
end if;
end if;
end process counter;
54

Bolchini Ferrandi Fummi

Branches -2

/\ case_statement
case expression is
when choice-1 => sequential_statements

when choice-n => sequential_statements
end case ;

> Equivalent toWITH /SELECT
> ALL possible choices must be includBBNGEis allowed.
> Choices cannot overlap

> Example:
CASE int_alS
WHEN 0 =>z<=a
WHEN1TO3 =>z<=b;
WHEN 2 |6|8=>z<=c; < error |
WHEN OTHERS =>7z<="'X};
END CASE ;

55

Bolchini Ferrandi Fummi

Loops

A for_statement
[label:] for index inrange loop
sequential_statements
end loop [label];

> indexis automatically declared as integer and

cannot be modified within the loop.
> rangemay be an enumerative type.
A loop_statement
[label:] [while condition] loop

sequential_statements
end loop [label];

» conditionis tested before each iteration.

56

Bolchini Ferrandi Fummi

Control Flow

/\ exit_statement
exit [label:] [when condition];

> terminates the execution of a while, for, loop.

> exit may be conditioned and it allows the exit from any
loop even if it is not the innermost one.
I1: FORiIN O TO 7 LOOP

[2: FORjINOTO 7 LOOP
EXIT 11 WHEN quit_both_loops ="'1"

A next_statement
next [label:] [when condition];

> terminates of the current iteration of a while, for, loop.

> it may be conditioned and it allows the termination of an
iteration of any loop.

57

Bolchini Ferrandi Fummi

Advanced Types -1

» The enumerated type declaration lists a set of names or

values defining a new type.
A enumerated_type_declaration
type identifier is (item, {item});
> Built-in scalar types: (standard packages)
type bitis (‘'0’, ‘1") ;
type character is (‘a’, ‘b’, ‘c’, ...
type boolean is (false, true);
type std_ulogic is (‘u’,’x’,‘'0",'1",'2’,'w’,I",'h’,*-);
> Built-in scalar physical types: (standard packages)
type time is range -922337036854775808 to 92...
units
fs; ps = 1000 fs; ... hr = 60 min ;
end units
58

Bolchini Ferrandi Fummi

Advanced Types -2

A array_type_declaration
type array_type_name is array (range) of type;

> Example
type string is array (positive range <>) of character;
type bit_vector is array (natural range <>) of bit;

> Subtypes are based upon existing type and is a
restriction of that type in some way using a range

constraint.

A subtype_declaration
subtype subtype_name is type_name range range;

59

Bolchini Ferrandi Fummi

Advanced Types -3

> Subtype examples:

SUBTYPE natural IS integer RANGE 0 TO 2147483647,
TYPE car IS (ford, buick, chevy, chrysler);

SUBTYPE gm IS car RANGE buick TO chevy;

TYPE data IS ARRAY (natural RANGE <>) OF bit;
SUBTYPE low_range IS data range (0 TO 7);
SUBTYPE high_range IS data range (8 TO 15);

> A subtype does not represent a new type.

60

Bolchini Ferrandi Fummi

Advanced Types -4

> Record types allow the group of objects of
different types into a single object.

record_declaration
type record_type_name is
record
identifier : type;

end record

= Example:
type instruct is record
source: integer range 0 to 7;
det: integer range 0 to 15
end record,

61

Bolchini Ferrandi Fummi

Procedure call -1

> Represents a method to perform complex
operation.

> May produce multiple output values:
> may affect input parameters (INOUT type);
> may have OUT parameters.

> Parameters may be signals, variables,
constants.

62

Bolchini Ferrandi Fummi

Procedure call -2

A procedure_declaration
procedure proc_name (parameters) is
[declarations]
begin
sequential_statements
end proc_name;

> Procedures are concurrently executed
whenever any of their IN or INOUT
parameters changes.

> Procedure can contawait statements.

» Local variable are initialized each time the
procedure is called.

63

Bolchini Ferrandi Fummi

Procedure call -3

> Example:

procedure find_min (variable values : in int_array;
variable min_val : inout integer ;
variable old_min : out integer) is
variable temp : integer;
begin
temp := old_min := min_val;
for i in values'range loop
if values(i) < temp then
temp := values(i)
end if;
end loop;
min_val := temp;
end find_min;

find_min (my_array, minimum, old_value);

64

Bolchini Ferrandi Fummi

Functions -1

> Return the result of a computation. They may be
used in any expression, in either a concurrent or
sequential statement.

> Declaration:
> it may be separated by its body part.

> it must be placed before its body and before its first use.
/\ function_declaration

function fun_name (parameters) return type;
function_body
function fun_name (parameters) return type is
[declarations]
begin
sequential_statements and return

end [fun_name];
65

Bolchini Ferrandi Fummi

Functions -2

> A function body can contain any sequential
statement exce[@IGNALassignments andAIT
statements.

> Local variables do not retain values between
successive calls; they are re-initialized each time.

> Functions are described into thackagebody or
architecturedeclarative part.

£~ function bit_to_boolean (bit_in : in bit) return boolean is

begin
if bit_in ='1' then return true;
else return false;

i end if;

i end bit_to_boolean;

66

Bolchini Ferrandi Fummi

Overloading -1

> The way of giving more than one meanings
to the same item.

> Overloading possibilities:
> enumeration identifiers

type count_cnt is (load , clear , accumulate);
type reg_cnt is (hold, clear , load);

> functions and procedures
function min (a, b : integer) return integer;
function min (float_a, float_b : real) return real;

> operator symbols

function " +" (a : state; b : integer) return state;

67

Bolchini Ferrandi Fummi

Overloading -2

> Subprograms selection:
> number of parameters;
> types of parameters;
> names of parameters (hnamed association);

> return type.
SIGNAL res : real,
SIGNAL inl, in2 : integer;
res <= min (in1, in2);

> Overloaded operator call:
> function notation
X ="y, 2);

> operator notation
X=y+z,
68

Bolchini Ferrandi Fummi

Signal Drivers

> They are containers for the assignments scheduleg
for a signal.

~ A driver is created every time a signal assignment
IS made' ‘Time Value

> Example: 0 0

5 1

clock <="'0', '1' after 5 ns, '0" after 10 ns; 10 0

> Times must be in ascending order.

> Multiple executions of the same assignment
modify the driver.

> Multiple concurrent statement assignments create
multiple drivers which must besolved

69

Bolchini Ferrandi Fummi

Resolution Functions -1

» Definition:

> subprograms defining the single value that the
signal should assume when there are multiple

values concurrently assigned.

~ Input: array that contains the current value of all
drivers.

~ Output: the selected single value.

type s_state is ('x','0','1','2"); begin

architecture ds of exam is o<=awhenel="1else 'z,
signal o : wired_or s_state; 0 <=bwhene2="1 else 'z
signal a, b, ¢ : s_state; 0 <=bwhene3="1"else 'z,
signal el, e2, e3 : hit; end

70

Bolchini Ferrandi Fummi

Resolution Functions -2

> Multiple drivers are created for the same signal o.
> Conflict assignments may occur.

> ES:
»el="1"ANDe2="1'
»el="1"ANDe2="0"AND e3="0'

> Resolution function:
FUNCTION wired_or (dr_out: s_state) RETURN s_state IS

4]
X
X
O
4]

1
X
0
A

— A==
N|= = |—=|N

71

Bolchini Ferrandi Fummi

Attributes

» General attributes can be attached to variables

also:
X' high X' low X' left X' right
> Attributes for array types:
array'’ range array' reverse_range array' length

> Example in a resolution function:

function wired_or (dr_out: s_state) return s_state is
begin
foriin dr_out' range

> User defined attributes:
ATTRIBUTE clock_source OF ck: SIGNAL is TRUE;

72

Bolchini Ferrandi Fummi

Signal Attributes

> Attributes of a signal are automatically generated
and can be obtained by using the ' symbol.

signal'EVENT signal'QUIET(t) signal'LAST_EVENT
boolean boolean boolean
signal'ACTIVE signal TRANSACTION signal'LAST_ACTIVE
boolean boolean time
signal'STABLE(t) signal'DELAYED(t) signal'LAST_VALUE
boolean signal value
> Example:

if (clcack ='1"and clock'active and clock'last_value = '0")
then

73

Bolchini Ferrandi Fummi

File I/O -1

> Access to files is provided by the textio package
specified by IEEE:

type line isaccess string;
type text isfile of string;
procedure readline (logical_file_name, line_name);

> reads a line of strings from the file.

procedure read (line_name, object_name);

> extracts an object from the line.

procedure writeline (logical_file_name, line_name);

> writes a line of strings to the file.

procedure write (line_name, object_name);

> writes an object to the line.

function endfile (op : IN text) RETURN boolean;
74

Bolchini Ferrandi Fummi

File I/O -2

» File declaration:

file logical_name : type is mode "physical name";
» Mode may be IN or OUT;
> Example:

file data_in : text is in "./input_file";

> File data analysis:

while not (endfile(data_in)) loop

» Data read:

variable in_line : line;
readline (data_in, in_line);
read (in_line, objectl) ; read (in_line, object2)
75

Bolchini Ferrandi Fummi

File I/0O -3

> Data write:

file data_out : text is out "./output_file" ;
variable out_line : line;

write (out_line, objectl) ; write(out_line, object2)
writeline (data_out, out_line) ;

> File open and close:
> Files are automatically open at the beginning of the
simulation and close at the end.
> Primary uses:
> store simulation results;

> application of stimuli.
76

