## Summer School on Formal Methods for Cyber–Physical Systems Edition 2019: Numerical and Symbolic Methods for Reachability Analysis of Hybrid Systems

#### Dipartimento di Ingegneria informatica automatica e gestionale Antonio Ruberti





# What is a hybrid system?

A dynamic system that exhibits both interacting

#### **CONTINUOUS dynamic behaviour**

# time-driven continuous-state systems state takes values in a continuous set and changes as time progresses

#### **DISCRETE dynamic behaviour**

#### • event-driven discrete-state systems

state takes values in a discrete set and changes due to the occurrence of an event



# Hybrid behavior arises in ...

#### **Continuous systems with phased operation**

*dynamics inherently hybrid* (mechanical systems with collisions, robotics, four-stroke engine, circuits with diodes, biological cell growth and division)

#### **Continuous systems controlled by discrete logic**

*quantized control* of a continuous system (thermostat, chemical plant with valves and pumps)

*embedded systems* where computational systems modeled as finite-state machines are coupled with plants and controllers modeled by continuous systems

*networked control systems* where sensors, controllers and actuators are connected by a shared network medium

*switching control* systems where some supervisor decides which controller in a given set to apply and when to switch to a different one

#### **Coordination of multi-agent systems**

*resource allocation for competing agents* with a continuous dynamics (air and ground transportation systems)

## **Continuous systems with phased operation**

## **Engine control**



a four-stroke gasoline engine is naturally modeled using four modes corresponding to the position of the pistons, while combustion and power train dynamics are continuous



Intake stroke: the piston is descending, the inlet valve is fully open and the exhaust valve is closed

#### Compression stroke: the piston rises, the inlet and exhaust valves are closed

The **power stroke** drives the piston downloads as the ignited gases expand. The inlet and the exhaust valves are closed The hot gases in the cylinder escape through the open exhaust valve as the piston rises again for the **exhaust stroke** 

#### Crankshaft dynamics depends on the torque generated by the pistons



## **Continuous systems controlled by discrete logic Embedded systems**

- micro-processors with an inherently discrete behavior (e.g. due to finite precision computations and quantization of signals) embedded in a physical device
- integrated with the physical world (continuous environment) through actuators and sensors
- sharing data and resources by a networked architecture

(networked embedded systems)



Real-time operation

- Must finish operations by deadlines.
- Hard real time: missing deadline causes failure.
- Soft real time: missing deadline results in degraded performance.



## **Continuous systems controlled by discrete logic Embedded systems**

#### **Automotive applications**

- Air Bags
- Traction Control
- Automatic Parking
- Anti-lock Brake
- Navigation Systems
- Emission Control
- Tire Pressure Monitor
- Climate Control

- Adaptive Cruise
- Night Vision
- Drive by wire
- Back-up collision sensor
- Rain-sensing Wipers

## Continuous systems controlled by discrete logic Switching control

Control of a complex plant:

different controllers designed for different control modes (different models), switching rule coded by a DES (e.g. flight control)



## **Continuous systems controlled by discrete logic Switching control**

Logic that selects which controller to use



## Gear shift control

Continuous control: throttle position u(t)

Discrete control: gear shift position

 $gear \in \{1, 2, 3, 4\}$ 





## **Coordination of multi-agent systems**

## Air traffic control

• predefined set of commands (speed change, short cut, detour...) issued by air traffic controllers to pilots to avoid conflicts

• sequencing of aircraft landing to some airport (distance to avoid turbulence caused by preceding aircraft, timing constraints)



## **Continuous systems controlled by discrete logic**

Temperature in a room controlled by a thermostat switching a heater on and off

Dynamics of the temperature (in °C):

$$\dot{x}(t) = -x(t) + u(t)$$

heater on:  $\dot{x}(t) = -x(t) + 30$ 

heater off:  $\dot{x}(t) = -x(t)$ 

#### Goal:

regulate the temperature around 21°C



**Strategy:** turn the heater from OFF to ON if  $x(t) \le 20$ 

turn the heater from ON to OFF if  $x(t) \geq 22$ 



## **Continuous systems controlled by a discrete logic**



$$\dot{x}(t) = -x(t) + u(t)$$

$$\dot{x}(t) = -x(t)$$
 if heater OFF  
 $\dot{x}(t) = -x(t) + 30$  if heater ON



 $\dot{x}(t) = -x(t)$  if heater OFF  $\dot{x}(t) = -x(t) + 30$  if heater ON

turn the heater from OFF to ON if  $x(t) \le 20$ turn the heater from ON to OFF if  $x(t) \ge 22$ 



If the state exits the domain (or "invariant set"), then a discrete transition must occur Guard conditions enable the discrete transition

$$\dot{x}(t) = -x(t)$$
 if heater OFF  
 $\dot{x}(t) = -x(t) + 30$  if heater ON



$$\dot{x}(t) = -x(t)$$
 if heater OFF  
 $\dot{x}(t) = -x(t) + 30$  if heater ON



transition from OFF to ON occurs when x(t) = 20

$$x(t) \le 20 \qquad \qquad x(t) \ge 20$$

$$\dot{x}(t) = -x(t)$$
 if heater OFF  
 $\dot{x}(t) = -x(t) + 30$  if heater ON



 $\dot{x}(t) = -x(t)$  if heater OFF  $\dot{x}(t) = -x(t) + 30$  if heater ON

turn the heater from OFF to ON if  $x(t) \le 20$ turn the heater from ON to OFF if  $x(t) \ge 22$ 



transition from ON to OFF occurs when x(t) = 22

$$x(t) \le 22 \qquad \qquad x(t) \ge 22$$

$$\dot{x}(t) = -x(t)$$
 if heater OFF  
 $\dot{x}(t) = -x(t) + 30$  if heater ON



$$\dot{x}(t) = -x(t)$$
 if heater OFF  
 $\dot{x}(t) = -x(t) + 30$  if heater ON



Initialization of the system

$$Init = q_1 \times \{x \le 22\} \bigcup q_2 \times \{x \ge 20\}$$

## Thermostat





 $Init = q_1 \times \{x \le 22\} \bigcup q_2 \times \{x \ge 20\}$ 

t





transition from OFF to ON occurs when  $19 \le x(t) \le 20$ 

$$\begin{aligned} x(t) \geq 19 \\ x(t) \leq 20 \end{aligned}$$





transition from ON to OFF occurs when  $21 \le x(t) \le 22$ 

 $x(t) \le 22$ 

 $x(t) \ge 21$ 





# The bouncing ball

2 situations:

a) ball flying in the air

b) ball hitting the ground



The state of the system is given by position  $x_1(t)$  and velocity  $x_2(t)$ 

# The bouncing ball

First situation: a) ball flying in the air



Conditions:

 $x_1(t) > 0$  or  $x_1(t) = 0 \land x_2(t) \ge 0$ 

Time-driven dynamics:

$$\dot{x}_1(t) = x_2(t)$$
$$\dot{x}_2(t) = -g$$

## The bouncing ball

Second situation: b) ball hitting the ground

Conditions:

$$x_1(t) = 0 \land x_2(t) < 0$$

Event-driven dynamics:

$$x_1(t^+) = x_1(t^-) = 0$$
  
 $x_2(t^+) = -cx_2(t^-)$ 





a) ball flying in the air  $x_1(t) > 0$  or  $x_1(t) = 0 \land x_2(t) \ge 0$   $\dot{x}_1(t) = x_2(t)$  $\dot{x}_2(t) = -g$  b) ball hitting the ground

$$x_1(t) = 0 \land x_2(t) < 0$$

$$x_1(t^+) = x_1(t^-) = 0$$
$$x_2(t^+) = -cx_2(t^-)$$

If the state exits the domain (or "invariant set"), then a discrete transition must occur








a) ball flying in the air  $x_1(t) > 0$ or  $x_1(t) = 0 \land x_2(t) \ge 0$  $\dot{x}_1(t) = x_2(t)$  $\dot{x}_2(t) = -g$  $x_2(t) := -cx_2(t)$ 

Guard conditions enable the discrete transition



$$x_1(t) = 0 \land x_2(t) < 0$$

$$x_1(t^+) = x_1(t^-) = 0$$
  
$$x_2(t^+) = -cx_2(t^-)$$









#### The bouncing ball: simplified hybrid model





A hybrid system H is a collection

$$H = (Q, X, Init, f, Inv, E, G, R)$$

$$ig> Q=\{q_1,q_2,\ldots\}$$
 is a set of discrete states

$$X = I\!\!R^n$$
 is a set of **continuous states**

$$Init \subseteq Q \times X$$
 is a set of initial states

$$\blacktriangleright$$
  $f(\cdot, \cdot): Q \times X \to I\!\!R^n$  is a vector field

$$\blacktriangleright \ Inv(\cdot):Q
ightarrow 2^X$$
 is a domain





$$H = (Q, X, Init, f, Inv, E, G, R)$$

$$Q = \{q_1\} \qquad Inv(q_1) = \{x_1 > 0\} \bigcup \{x_1 = 0 \land x_2 \ge 0\}$$

$$X = \mathbb{R}^2 \qquad E = \{e_1 = (q_1, q_1)\}$$

$$Init = q_1 \land \{x_1 \ge 0\} \qquad G(e_1) = \{x_1 = 0 \land x_2 < 0\}$$

$$f(q_1, x_1, x_2) = \begin{pmatrix} x_2 \\ -g \end{pmatrix} \qquad R(e_1, x_1, x_2) = \begin{pmatrix} x_1 \\ -cx_2 \end{pmatrix}$$



H = (Q, X, Init, f, Inv, E, G, R)

 $Q = \{q_1, q_2\}$   $Inv(q_1) = \{x \le 22\}, Inv(q_2) = \{x \ge 20\}$   $K = \mathbb{R}$   $E = \{e_1 = (q_1, q_2), e_2 = (q_2, q_1)\}$   $Init = q_1 \times \{x \le 22\} \bigcup q_2 \times \{x \ge 20\}$   $G(e_1) = \{x = 22\}, G(e_2) = \{x = 20\}$   $f(q_1, x) = -x + 30, f(q_2, x) = -x$   $R(e_1, x) = R(e_2, x) = x$ 

#### Time to exercise

Frictionless movement of a particle in a bounded interval subject to elastic collisions at the end points of the interval itself



#### Time to exercise

Frictionless movement of two particles in a bounded interval subject to elastic collisions between them and at the end points of the interval itself



Define the hybrid system for the following phenomenon:



$$x(t)$$
 level of water in the tank

- $f_{in}$  input flow (constant)
- $f_{out}$  output flow (constant) from each output pipe
- $h_2$  height of the second output pipe
- $h_1$  threshold value for the water level

$$2f_{out} > f_{in} > f_{out}$$

#### **Dynamics of the level**

 $\dot{x}(t)=\,$  input flow  $\,$  -  $\,$  output flow  $\,$ 

#### **Control logic**

Input valve open if  $x(t) < h_1$ Input valve closed if  $x(t) \ge h_1$ 

## Hybrid time set

A hybrid time set  $\, au\,$  is a sequence (finite or infinite) of intervals

$$\tau = \{I_0, I_1, \ldots, I_N\}$$

such that

 $au_k$  represent times of discrete transitions

> 
$$I_k = [\tau_k, \tau'_k]$$
 for all  $k = 0, 1, ..., N-1$ 

consecutive intervals, without gaps

 $\blacktriangleright$   $au_k \leq au_k' = au_{k+1}$  for all k

*intervals can be degenerate to represent multiple transitions at the same time* 

if 
$$N<\infty$$
 then either  $I_N=[ au_N, au_N']$  or  $I_N=[ au_N, au_N')$ 

## Hybrid time set

$$au = \{I_0, I_1, \dots, I_N\}$$
 length



multiple transitions at this time

A hybrid trajectory is a triple  $\ \chi = ( au, q, x) \$  where

$$ig> au$$
 is a hybrid time set  $au = \{I_0, I_1, \dots, I_N\}$ 

> 
$$q$$
 is a sequence of functions  $q_0(\cdot), q_1(\cdot), \ldots, q_N(\cdot)$   
 $q_k(\cdot): I_k \to Q$ 



> x is a sequence of functions  $x_0(\cdot), x_1(\cdot), \ldots, x_N(\cdot)$ 

$$x_k(\cdot): I_k \to \mathbb{R}^n$$

## Hybrid execution

A hybrid execution of a hybrid system

$$H = (Q, X, Init, f, Inv, E, G, R)$$

is a hybrid trajectory  $\chi = (\tau, q, x)$  such that

Initial condition

 $(q_0(0), x_0(0)) \in Init$ 



$$\blacktriangleright$$
  $q_k(\cdot): I_k \to Q$  is constant over  $t \in I_k$ 

> 
$$x_k(\cdot): I_k \to I\!\!R^n$$
 is the solution of the  
diff. equation  $\dot{x}_k(t) = f(q_k(t), x_k(t))$   
starting at  $x_k(\tau_k)$ 

$$x_k(t) \in Inv(q_k(t))$$





**Event-driven transitions** 

H = (Q, X, Init, f, Inv, E, G, R)

 $(q_k(\tau'_k), q_{k+1}(\tau_{k+1})) \in E$   $x_k(\tau'_k) \in G(q_k(\tau'_k), q_{k+1}(\tau_{k+1}))$  $x_{k+1}(\tau_{k+1}) \in R(q_k(\tau'_k), q_{k+1}(\tau_{k+1}), x_k(\tau'_k))$ 







Execution time: 
$$au(\chi) = \sum_{k=0}^{N} ( au_k' - au_k)$$

An execution is called

*Finite* if  $\tau$  is a finite sequence and the last interval is closed

 $N<\infty$  and  $I_N=[ au_N, au_N']$ 

Infinite if au is an infinite sequence, or if the execution time is infinite  $N=\infty$  or  $au(\chi)=\infty$ 

**Zeno** if  $\tau$  is an infinite sequence but the execution time is finite

$$N=\infty$$
 and  $au(\chi)<\infty$ 

### Time to exercise

For each execution, determine if it is finite, infinite or Zeno



### Time to exercise

For each execution, determine if it is finite, infinite or Zeno



A state  $(\bar{q}, \bar{x}) \in Q \times X$  of a hybrid system H is reachable if there exists a finite execution ending in  $(\bar{q}, \bar{x})$ 

$$Init \subseteq Reach$$

A state  $(\bar{q}, \bar{x}) \in Q \times X$  of a hybrid system H is an outside state if continuous evolution from that state forces the system to exit the domain instantaneously.

 $Out = \{(q, x) \in Q \times X | \forall \epsilon > 0, \exists t \in [0, \epsilon) \text{ such that } (q, x(t)) \notin Inv(q) \}$ 

$$\bigcup_{q \in Q} \{q\} \times \overline{Inv(q)} \subseteq Out$$
states outside  $Inv(q)$ 



$$Reach = Init = q_1 \times \{x_1 \ge 0\}$$

$$Out = \{q_1 \times \{x_1 < 0\} \} \cup \{q_1 \times \{x_1 = 0, x_2 < 0\}\}$$

A hybrid system H is called *non-blocking* if there exists an infinite execution starting at each initial state  $(q, x) \in Init$ 

A hybrid system H is called *deterministic* if at each initial state  $(q, x) \in Init$  corresponds a unique execution

A hybrid system H is called **Zenonian** if there exist an initial state  $(q, x) \in Init$  to which corresponds a zeno execution

$$N=\infty$$
 and  $au(\chi)<\infty$ 

A hybrid system H is **non-blocking** if

(A deterministic hybrid system H is **non-blocking** if and only if)

1)  $f(q, \cdot)$  is Lipschitz continuous for each  $q \in Q$ 

2)  $\forall (q, x) \in Out \cap Reach, \ \exists (q, q') \in E : x \in G(q, q')$ 

$$Out = \{q_1 \times \{x_1 < 0\} \} \cup \{q_1 \times \{x_1 = 0, x_2 < 0\}\}$$
$$Reach = Init = q_1 \times \{x_1 \ge 0\}$$



A hybrid system H is **non-blocking** if

(A deterministic hybrid system H is **non-blocking** if and only if)

1)  $f(q, \cdot)$  is Lipschitz continuous for each  $q \in Q$ 

2)  $\forall (q, x) \in Out \cap Reach, \ \exists (q, q') \in E : x \in G(q, q')$ 



A hybrid system H is *deterministic* if and only if  $\forall (q, x) \in Reach$ 1) If  $x \in G(e)$  for some  $e = (q, q') \in E$ , then  $(q, x) \in Out$ 2) If  $e = (q, q') \in E$  and  $e' = (q, q'') \in E$ , then  $x \notin G(e) \cap G(e')$ 3) If  $e = (q, q') \in E$  and  $x \in G(e)$ , then R(e, x) contains a single element



## **Existence and uniqueness of executions**

A hybrid automaton has a unique infinite execution for each initial state if it is non-blocking and deterministic.

- $f(q,\cdot)$  is Lipschitz continuous for each  $\,q\in Q\,$
- $\forall (q, x) \in Out \cap Reach, \ \exists (q, q') \in E : x \in G(q, q')$

This concerns with global existence of a solution, not uniqueness!

- If  $x \in G(e)$  for some  $e = (q,q') \in E$  , then  $(q,x) \in Out$
- If  $e = (q, q') \in E$  and  $e' = (q, q'') \in E$ , then  $x \notin G(e) \cap G(e')$
- If  $e = (q, q') \in E$  and  $x \in G(e)$ , then R(e, x) contains a single element

#### Time to exercise



 $Init = q_1 \times \{x \in [-10, 0]\}$ 

Is the hybrid system *deterministic*?

Is the hybrid system *non-blocking*?

Compute the sets *Out* and *Reach* 

A hybrid system is *non-blocking* if  $\forall (q, x) \in Out \cap Reach, \exists (q, q') \in E : x \in G(q, q')$ 

# Zenonian Hybrid models

Achilles is in a footrace with the tortoise and allows the tortoise a head start. After some finite time, Achilles reaches the tortoise's starting point. During this time, the tortoise has run a much shorter distance. It will then take Achilles some further time to run that distance, by which time the tortoise will have advanced farther... Thus, whenever Achilles arrives somewhere the tortoise has been, he still has some distance to go before he can even reach the tortoise.

d

# **Zenonian Hybrid models**

Achilles is in a footrace with the tortoise and allows the tortoise a head start. After some finite time, Achilles reaches the tortoise's starting point. During this time, the tortoise has run a much shorter distance. It will then take Achilles some further time to run that distance, by which time the tortoise will have advanced farther... Thus, whenever Achilles arrives somewhere the tortoise has been, he still has some distance to go before he can even reach the tortoise.

# **Zenonian Hybrid models**

Achilles is in a footrace with the tortoise and allows the tortoise a head start. After some finite time, Achilles reaches the tortoise's starting point. During this time, the tortoise has run a much shorter distance. It will then take Achilles some further time to run that distance, by which time the tortoise will have advanced farther... Thus, whenever Achilles arrives somewhere the tortoise has been, he still has some distance to go before he can even reach the tortoise.

d



The value is opened if the level is below the assigned threshold and is closed if the level is above the assigned threshold



## **Switched Flow System**

Instantaneously move the input to any tank in which the level falls below the assigned threshold



$$x_1(0) > h_1$$

 $x_2(0) > h_2$ 

 $2f_{out} > f_{in} > f_{out}$ 

- $x_i(t)$  water level of the *i*-th tank
- $f_{out}$  output flow of the *i*-th tank
  - $h_i$  threshold assigned to tank i
- $f_{in}$  input flow




Regularization of Zeno hybrid automata



















# **Switched Flow System**























$$H = (Q, X, Init, f, Inv, E, G, R)$$

### **Definition (equilibrium):**

 $x_e \in X$  is an equilibrium point of  $H\,$  if there exists a nonempty set  $\,\hat{Q} \subseteq Q\,$  such that

• 
$$f(q, x_e) = 0$$
 for all  $q \in \hat{Q}$ 

• if 
$$e = (q, q') \in E \land x_e \in G(e) \Rightarrow R(e, x_e) = \{x_e\}$$

#### **Remarks:**

Discrete transitions are allowed out of  $(q, x_e)$  but only to  $(q', x_e)$ 

if  $(q, x_e) \in Init$  and  $\chi = (\tau, q, x)$  is an execution of H starting from  $(q, x_e)$ , then  $x(t) = x_e$  for all  $t \in \tau$ 

## **Stability**

$$H = (Q, X, Init, f, Inv, E, G, R)$$

### **Definition (stable equilibrium):**

Let  $x_e \in X$  be an equilibrium point of H.

 $x_e$  is **stable** if

 $\forall \epsilon, \exists \delta(\epsilon)$ : for all executions  $\chi = (\tau, q, x)$  of H starting from  $(q, x_0)$ 

$$|x_0 - x_e| < \delta \Rightarrow |x(t) - x_e| < \epsilon, \forall t \in \tau$$

### **Definition (stable equilibrium):**

Let  $x_e \in X$  be an equilibrium point of H .

 $x_e$  is asymptotically stable if

- it is stable
- $\exists \delta_a$ : for all executions  $\chi = (\tau, q, x)$  of H starting from  $(q, x_0)$

$$|x_0 - x_e| < \delta_a \Rightarrow \lim_{t \to \infty} |x(t) - x_e| = 0$$

A point which is an asymptotically stable equilibrium point of each location system is an aymptotically stable point of H?



Switching between asymptotically stable linear systems, but  $x_e = 0$  is an unstable equilibrium of H !



Switching between asymptotically stable linear systems and  $x_e = 0$  is an asymptotically stable equilibrium of H

