Controller Implementation--Part T

- Alternative controller FSM implementation
approaches based on:

- Classical Moore and Mealy machines

- Time state: Divide and Counter

- Jump counters

- Microprogramming (ROM) based approaches

» branch sequencers
» horizontal microcode
» vertical microcode

CS 150 - Spring 2007 — Lec #14: Control Implementation - 1

Cascading Edge-triggered Flip-Flops
* Shift register

- New value goes into first stage
- While previous value of first stage goes into second stage
- Consider setup/hold/propagation delays (prop must be > hold)

Qo0 Q1
IN D Q D Q ouT

CLK

CLK

rrt ot

CS 150 - Spring 2007 — Lec #14: Control Implementation - 2

Cascading Edge-triggered Flip-Flops
* Shift register

- New value goes into first stage
- While previous value of first stage goes into second stage
- Consider setup/hold/propagation delays (prop must be > hold)

Qo Q1
IN D Q D Q ouTt
>
Clk1
IN
Qo0
Q1
CLK E ;
Cki L 11 L

CS 150 - Spring 2007 — Lec #14: :Control Imp:lementation -3

Clock Skew

* The problem
- Correct behavior assumes next state of all storage elements
determined by all storage elements at the same time
- Difficult in high-performance systems because time for clock to
arrive at flip-flop is comparable to delays through logic (and will soon
become greater than logic delay)
- Effect of skew on cascaded flip-flops:

In CLK1 is a delayed

Q0 . / version of CLK

Q1 1
CLK f\\ =
CLK1 _

original state: IN=0,Q0=1,Q1 =1
due to skew, next state becomes: Q0 =0,Q1 =0,andnot Q0 =0,Q1 =1
CS 150 - Spring 2007 — Lec #14: Control Implementation - 4

Why Gating of Clocks is Bad!

LD

—>R€9—> —>R€9—>

/‘\ /\

Clk _ atedCIK
vl 7
GO0D BAD

Do NOT Mess With Clock Signals!

CS 150 - Spring 2007 — Lec #14: Control Implementation - 5

Why Gating of Clocks is Bad!

Ck _nm—_rm— I 1 or—1_
o —m—

gatedClk _I_|_®_l_|_l_l_

Runt pulse plays HAVOC with register internals!

LD generated by FSM
shortly after rising edge of CLK

NASTY HACK: delay LD through ck — i
negative edge triggered FF to : :

ensure that it won't change during LDn b
next positive edge event gatedClk — i

Clk skew PLUS LD delayed by half clock cycle ..
What is the effect on your register transfers?

Do NOT Mess With Clock Signals!

CS 150 - Spring 2007 — Lec #14: Control Implementation - 6

Why Gating of Clocks is Bad!

Reset |
S | L
-’E — Reg -
3 1T
Q
A A
| slowCIK
Clk
BAD

Do NOT Mess With Clock Signals!

CS 150 - Spring 2007 — Lec #14: Control Implementation - 7

Why Gating of Clocks is Bad!

Reset

LD
s | L
€ — » Reg ——
i
)
s a
Clk
Better!

Do NOT Mess With Clock Signals!

CS 150 - Spring 2007 — Lec #14: Control Implementation - 8

Alternative Ways to Implement
Processor FSMs

+ "Random Logic" based on Moore and Mealy Design
- Classical Finite State Machine Design

- Divide and Conquer Approach: Time-State Method
- Partition FSM into multiple communicating FSMs

- Exploit Logic Block Functionality: Jump Counters
- Counters, Multiplexers, Decoders

* Microprogramming: ROM-based methods

- Direct encoding of next states and outputs

CS 150 - Spring 2007 — Lec #14: Control Implementation - 9

Random Logic

» Perhaps poor choice of terms for "classical"
FSMs

* Contrast with structured logic: PLA, FPGA,
ROM-based (latter used in microprogrammed
controllers)

» Could just as easily construct Moore and Mealy
machines with these components

CS 150 - Spring 2007 — Lec #14: Control Implementation - 10

Moore Machine

RES

N 0—PC
State Diagram
IFO) PC - MAR,PC+1 —= PC
Note capture of MBR " Wat
in these states Wait!

. MAR — Mem, 1 — Read/Write,
Waitl 4 _, Request, Mem — MBR

MBR — IR

LDO IR = MAR BRO

AC — MBR

Wait/ MAR — Mem, aitl MAR — Mem, poo = A=
LD1 A — Read/Write, ST1 0 —> Read/Write, AD1 1 — Read/Write, rb pC
1 — Request, N 1 = Request, .\ 1 — Request,
Wait/ Mem — MBR Wait/ MBR — Mem Wait/ Mem — MBR

LD2? MBR — AC AD2? MER + AG — AG

CS 150 - Spring 2007 — Lec #14: Control Implementation - 11

Memory-Register Interface Timing

F1 F2 F2 IF2 ' IF3
CLK | | | |
WAIT |
o Bus T

LatchMBR | 7T P A

Invalid Data Invalid Data Valid Data
Latched Latched Latched

Valid data latched on IF2 to IF3 transition
because data must be
valid before Wait can go low

CS 150 - Spring 2007 — Lec #14: Control Implementation - 12

Moore Machine Diagram

i

Next State
Logic

Clock

> |

£ o
o]
Qg
0 C
=N

us

rite

eques

ress

emory
emory Data Bus

emory Data Bus

16 states, 4 bit state register
Next State Logic: 9 Inputs, 4 Outputs
Output Logic: 4 Inputs, 18 Outputs

These can be implemented via ROM
or PAL/PLA

Next State: 512 x 4 bit ROM
Output: 16 x 18 bit ROM

CS 150 - Spring 2007 — Lec #14: Control Implementation - 13

Moore Machine State Table

AC<15>Current State Next State

Register Transfer Ops

1

ResetWaitIR<15> IR<14>
X X X
X X X
X X X
0 X X

1 X X
1 X X
0 X X
0 X X
1 X X
X 0 0
X 0 1
X 1 0
X 1 1

O OO OO0 OO0 O0OO0OOoO oo

X

X
X
X
X
X
X
X
X
X
X
X
X

X
RES (0000)
IFO (0001)
IF1 (0010)
IF1 (0010)
IF2 (0011)
IF2 (0011)
IF3 (0100)
IF3 (0100)
oD (0101)
oD (0101)
oD (0101)
oD (0101)

RES (0000)
IFO (0001)
IF1(0001)
IF1 (0010)
IF2 (0011)
IF2 (0011)
IF3 (0100)
IF3 (0100)

oD (0101)

LDO (0110)
STO (1001)
ADO (1011)
BRO (1110)

0—PC
PC — MAR,PC+1— PC

MAR — Mem, Read,
Request, Mem — MBR
MBR — IR

CS 150 - Spring 2007 — Lec #14: Control Implementation - 14

Moore Machine State Table

ResetWait IR<15> IR<14> AC<15> Current State Next State
0 X X X X LDO (0110) LD1 (0111)
0 1 X X X LD1 (0111) LD1 (0111)
0 0 X X X LD1 (0111) LD2 (1000)
0 X X X X LD2 (1000) IFO (0001)
0] X X X X STO (1001) ST1(1010)
0 1 X X X ST1(1010) ST1(1010)
0 0 X X X ST1(1010) IFO (0001)
0 X X X X ADO (1011) AD1 (1100)
0] 1 X X X AD1 (1100) AD1 (1100)
0 0 X X X ADI1 (1100) AD2 (1101)
0 X X X X AD2 (1101) IFO (0001)
0 X X X 0 BRO (1110) IFO (0001)
0 X X X 1 BRO (1110) BR1 (1111)
0] X X X X BR1 (1111) IFO (0001)

CS 150 - Spring 2007 — Lec #14: Control Implementation - 15

Register Transfer Ops
IR — MAR

MAR — Mem, Read,
Request, Mem — MBR
MBR — AC

IR — MAR, AC - MBR
MAR — Mem, Write,
Request, MBR — Mem
IR — MAR

MAR — Mem, Read,
Request, Mem — MBR
MBR + AC — AC

IR — PC

Moore Machine State Transition Table

Observations:
- Extensive use of Don't Cares

Some outputs always asserted in a group

- Inputs used only in a small number of state

e.g., AC<15> examined only in BRO state
IR<15:14> examined only in OD state

ROM-based implementations cannot take advantage of
don't cares

However, ROM-based implementation can skip state
assignment step

CS 150 - Spring 2007 — Lec #14: Control Implementation - 16

Synchronous Mealy Machines

+ Standard Mealy Machine has asynchronous outputs

* Change in response to input changes, independent of clock

* Revise Mealy Machine design so outputs change only on clock edges
* One approach: non-overlapping clocks

A STATE Al STATE A STATE
D D
- Q Q
Synchronizer A Y A v v
ircuitry at
Inputs ynd Output Output Outp_ut
p ? Logic Logic Logic
Outputs
1| i

CS 150 - Spring 2007 — Lec #14: Control Implementation - 17

Synchronous Mealy Machines

Case I: Synchronizers at Inputs and Outputs
cycle0 cycle1 cycle2 @

CLK T T Alf
A

A |
f
—

F

A asserted in Cycle O, f becomes asserted after 2 cycle delay!

This is clearly overkill!

CS 150 - Spring 2007 — Lec #14: Control Implementation - 18

Synchronous Mealy Machine

Case IT: Synchronizers on Inputs

cycle0 cycle1 cycle2 @

ax ||| &,

A \ A'lf
b

A asserted in Cycle O, f follows in next cycle

Same as using delayed signal (A") in Cycle 1!

CS 150 - Spring 2007 — Lec #14: Control Implementation - 19

Synchronous Mealy Machines

Case III: Synchronized Outputs
cycle0 cycle1 cycle2 @

CLK T T Alf

A asserted during Cycle O, £ asserted in next cycle

Effect of £ delayed one cycle

CS 150 - Spring 2007 — Lec #14: Control Implementation - 20

Synchronous Mealy Machines

* Implications for Processor FSM Already Derived
* Consider inputs: Reset, Wait, IR<15:14>, AC<15>

- Latter two already come from registers, and are sync'd to
clock

- Possible o load IR with new instruction in one state &
perform multiway branch on opcode in next state

- Best solution for Reset and Wait: synchronized inputs
» Place D flipflops between these external signals and the
» control inputs to the processor FSM
» Sync'd versions of Reset and Wait delayed by one clock cycle

CS 150 - Spring 2007 — Lec #14: Control Implementation - 21

Time State Divide and Conquer

 Overview
- Classical Approach: Monolithic Implementations
- Alternative "Divide & Conquer" Approach:
» Decompose FSM into several simpler communicating FSMs
» Time state FSM (e.g., IFetch, Decode, Execute)

» Instruction state FSM (e.g., LD, ST, ADD, BRN)
» Condition state FSM (e.g., AC< 0, AC = 0)

CS 150 - Spring 2007 — Lec #14: Control Implementation - 22

Time State (Divide & Conquer)

T0O MN<
Time State FSM Q

Most instructions follow same basic sequence T1 Wait/

Wait/

Differ only in detailed execution sequence Y
T2 Wait/
Time State FSM can be parameterized by

opcode and AC states Wait

<

—
w

Waltl

—
H

Instruction State:
stored in IR<15:14>

A4
T5 O BRN+<AC 0/ >

LD ST ADD BRN (LD + ST + ADD) - Wait/

Condition State: AC<15>=0 AC =0 BRN +(ST Walt)l

stored in AC<15> (LD + ADD) * Wait

<
AC AC<15>=1 Q
CS 150 - Spring 2007 — Lec #14: Control Implementation - 23

Time State (Divide & Conquer)

Generation of Microoperations

0 — PC: Reset

PC + 1 - PC: TO

PC - MAR: TO

MAR — Memory Address Bus: T2 + T6 + (LD + ST + ADD)
Memory Data Bus — MBR: T2 + T6 - (LD + ADD)
MBR — Memory Data Bus: T6 -+ ST

MBR — IR: T4

MBR —- AC: T7 - LD

AC - MBR: T5 - ST

AC + MBR - AC: T7 - ADD

IR<13:0> — MAR: T5 - (LD + ST + ADD)
IR<13:0> — PC: T6 *+ BRN

1 - Read/Write: T2 + T6 - (LD + ADD)

0 — Read/Write: T6 - ST

1 - Request: T2 + T6 - (LD + ST + ADD)

CS 150 - Spring 2007 — Lec #14: Control Implementation - 24

Jump Counter

Concept

Implement FSM using MSI functionality: counters, mux, decoders

Pure jump counter: only one of four possible next states

Single "Jump State"
function of the current
state

Hybrid jump counter:
Multiple "Jump States" — function of current state + inputs

CS 150 - Spring 2007 — Lec #14: Control Implementation - 25

Jump Counters

Pure Jump Counter

Inputs
i i NOTE: No inputs to
YYY YY VYY jump state logic
Count, Load, Jump State
Clear Logic Logic
Clear _ ‘ ‘ ‘ ‘
—~
Load > Synchronous
Count > Counter
CLOCK _State Register

Logic blocks implemented via discrete logic, PLAs, ROMs

CS 150 - Spring 2007 — Lec #14: Control Implementation - 26

Jump Counters

Problem with Pure Jump Counter

Difficult to implement multi-way branches

)

Logical State Diagram

Extra States:

Pure Jump Counter
State Diagram

CS 150 - Spring 2007 — Lec #14: Control Implementation - 27

Jump Counters

Hybrid Jump Counter

Inputs Load inputs are
function of state
v and FSM inputs
Count, Load, Jump State
Clear Logic Logic
Clear ‘ ‘ ‘ ‘
Load
——————>| Synchronous
Count > Counter
CLOCK _State Register
\ |

CS 150 - Spring 2007 — Lec #14: Control Implementation - 28

Jump Counters

RESi>K\/Reset
>0
Implementation Example

State assignment IF2 Wait
attempts to take
advantage of
sequential states

CS 150 - Spring 2007 — Lec #14: Control Implementation - 29

Jump Counters
Implementation Example, Continued

CNT = (s0 + s5 + s8 + s10) + Wait * (s1 + s3) + Wait * (s2 + s6 + s9 + s11)
CNT = Wait « (s1 + s3) + Wait * (s2 + s6 + s9 + s11)
CLR = Reset + s7 + s12 + s13 + (s9 * Wait)

CLR = Reset * s7 » 512 * 13 * (s9 + Wait)
LD = s4

Contents of Jump State ROM

Address Contents (Symbolic State)
00 0101 (LDO)
01 1000 (STO)
10 1010 (ADO)
1 1101 (BRO)

CS 150 - Spring 2007 — Lec #14: Control Implementation - 30

Jump Counters

Implementation Example,

Cnt PAL
Wait
S11

Wait
/811
1S9
/S6
1S3
182

continued

Implement CNT
using active lo

bbhdddd |

/81

Jump State
IR15 | |R<15>

[>—
> IR<14>

O =-2NW

IR14 |

o
-
(<2
w

©

00O
OO0
RN

|

9]
5
N

Implement CLR

1 = /Reset
0~ D{H

1~ Wait /Wait
0~ D(H

_\
[6;]
>l

o

.
d

B RIRS

154

G2

b NoNw)

A“
w O
AR
a'o'~N

N

_\
o

il

s

RRAARRAARS

outputs from

W'

-
o

NOTE: Active lo

CS 150 - Spring 2007 — Lec #14: Control Implementation - 31 decoder
15
/CLRm CNT 14 i
CLR, CNT, LD i T SEE 154 150
implemented via / PT 163 e 11
Mux LOgiC Jump State >DCLK Rggi iﬂ et 1%:
/ RIS e a c a o o
L>riz|IR<14> é 2 QA i g:
CLR = CLRm + Reset 1. Reset Reset LD__ 4\ 0AD ét
0 — «Dw ICLR_Joir Slo—
CLR = CLRm + Reset o e e -
| [|
Active Lo outputs: §3528150 83525130 S3528180
hi input inverted at T 285 150 85 150 fﬁéi’ 150
— E14 E14
the output Ty E13 vy E13 E13
—|E12 E12 E12
R E11 E11 Eé
—t—E10 E10
Note that CNT is I Wit o £o
active hi on counter TE eoutp® o ES EOUTP— nn ey EOUT—
so invert MUX inputs! E6 E6 E6
——IE5 E5 E5
L Es E4 A E4
E3 E3
Wait {_ ES E2 E2
IWait E1 E1 E1
j;— EO T EO T EO

CS 150 - Spring 2007 — Lec #14: Control Implementation - 32

/815
/S14
/813
/812
/811
/$10
/S9
/S8
/S7
/S6
/S5
/S4
/S3
/82
/81
/S0

\S13
\S12
\S11
\810
\S9
\S8
\S7
\S6
\S5
\S4
\S3
\S2
\S1
\SO

/LD

Jump Counters

Microoperation implementation

0 — PC = Reset

PC+1-PC=50

PC - MAR = SO

MAR — Memory Address Bus =

Wait:(S1+ S2+ S5+ S6 + S8 + S9 + S11 + 5122

Memory Data Bus — MBR = Wai‘r-éSZ + 56 + Sll)

MBR - Memory Data Bus = Wait+(S8 + S9)

MBR — IR = Wait-S3

MBR — AC = Wait-S7

AC — MBR = TR15-TR14-54

AC + MBR — AC = Wait-512

TR<13:0> - MAR = (IR15-IR14 + IR15-IR14 + IR15-IR14)-S4
TR<13:0> - PC = AC15-513

1 - Read/Werite = Wait+(S1 + S2 + S5 + S6 + S11 + 512)

0 — Read/Werite = Wait+(S8 + S9

1 - Request = Wait+(S1+ S2 + S5 + S6 + S8 + S9 + S11 + S512)

Jump Counters: CNT, CLR, LD function of current state + Wait
Why not store these as outputs of the Jump State ROM?
Make Wait and Current State part of ROM address

32 x as many words, 7 bits wide

CS 150 - Spring 2007 — Lec #14: Control Implementation - 33

Controller Implementation Summary
(Part Il)

» Control Unit Organization
- Register transfer operation
- Classical Moore and Mealy machines
- Time State Approach
- Jump Counter

- Next Time:
» Branch Sequencers
» Horizontal and Vertical Microprogramming

CS 150 - Spring 2007 — Lec #14: Control Implementation - 34

