2D Discrete Fourier Transform (DFT)

Outline

- Circular and linear convolutions
- 2D DFT
- 2D DCT
- Properties
- Other formulations
- Examples

Circular convolution

- Finite length signals (N_{0} samples) \rightarrow circular or periodic convolution
- the summation is over 1 period

$$
c[k]=f[k] \otimes g[k]=\sum_{n=0}^{N_{0}-1} f[n] g[k-n]
$$

- The circular convolution is equivalent to the linear convolution of the zeropadded equal length sequences

For the convolution property to hold, M must be greater than or equal to $\mathrm{P}+\mathrm{Q}-1$.

Convolution

- Zero padding $\quad f[m]^{*} g[m] \Leftrightarrow F[k] G[k]$

4-point DFT
$(M=4)$
$F[k]$

In words

- Given 2 sequences of length N and M, let $y[k]$ be their linear convolution

$$
y[k]=f[k] * h[k]=\sum_{n=-\infty}^{+\infty} f[n] h[k-n]
$$

- $y[k]$ is also equal to the circular convolution of the two suitably zero padded sequences making them consist of the same number of samples

$$
\begin{aligned}
& c[k]=f[k] \otimes h[k]=\sum_{n=0}^{N_{0}-1} f[n] h[k-n] \\
& N_{0}=N_{f}+N_{h}-1: \text { length of the zero-padded seq }
\end{aligned}
$$

- In this way, the linear convolution between two sequences having a different length (filtering) can be computed by the DFT (which rests on the circular convolution)
- The procedure is the following
- Pad $f[n]$ with $N_{h}-1$ zeros and $h[n]$ with $N_{f}-1$ zeros
- Find $\mathrm{Y}[r]$ as the product of $\mathrm{F}[r]$ and $\mathrm{H}[r]$ (which are the DFTs of the corresponding zero-padded signals)
- Find the inverse DFT of $\mathrm{Y}[\mathrm{r}]$
- Allows to perform linear filtering using DFT

2D Discrete Fourier Transform

- Fourier transform of a 2D signal defined over a discrete finite 2D grid of size MxN
or equivalently
- Fourier transform of a 2D set of samples forming a bidimensional sequence
- As in the 1D case, 2D-DFT, though a self-consistent transform, can be considered as a mean of calculating the transform of a 2 D sampled signal defined over a discrete grid
- The signal is periodized along both dimensions and the 2D-DFT can be regarded as a sampled version of the 2D DTFT

2D Discrete Fourier Transform (2D DFT)

- 2D Fourier (discrete time) Transform (DTFT) [Gonzalez]

$$
F(u, v)=\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} f[m, n] e^{-j 2 \pi(u m+v n)}
$$

a-periodic signal periodic transform

- 2D Discrete Fourier Transform (DFT)

$$
F[k, l]=\frac{1}{M N} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f[m, n] e^{-j 2 \pi\left(\frac{k}{M} m+\frac{l}{N} n\right)}
$$

periodized signal
periodic and sampled transform

2D DFT can be regarded as a sampled version of 2D DTFT.

2D DFT: Periodicity

- $A[M, N]$ point $D F T$ is periodic with period $[M, N]$
- Proof

$$
\begin{aligned}
& F[k, l]=\frac{1}{M N} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f[m, n] e^{-j 2 \pi\left(\frac{k}{M} m+\frac{l}{N} n\right)} \\
& \begin{aligned}
F[k+M, l+N] & =\frac{1}{M N} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f[m, n] e^{-j 2 \pi\left(\frac{k+M}{M} m+\frac{l+N}{N} n\right)} \\
& \left.=\frac{1}{M N} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f[m, n] e^{-j 2 \pi\left(\frac{k}{M} m+\frac{l}{N} n\right)} e^{-j 2 \pi\left(\frac{M}{M} m+\frac{N}{N} n\right.}\right) \\
& =F[k, l]
\end{aligned}
\end{aligned}
$$

(In what follows: spatial coordinates=k,1, frequency coordinates: u, v)

2D DFT: Periodicity

- Periodicity

$$
\begin{aligned}
& F[u, v]=F[u+m M, v]=F[u, v+n N]=F[u+m M, v+n N] \\
& f[k, l]=f[k+m M, l]=f[k, l+n N]=f[k+m M, l+n N]
\end{aligned}
$$

- This has important consequences on the implementation and energy compaction property
- 1D

$$
F[N-u]=F^{*}[u]
$$

$\mathrm{f}[\mathrm{k}] \mathrm{real} \rightarrow \mathrm{F}[\mathrm{u}]$ is Hermitian symmetric $\mathrm{M} / 2$ samples are enough

Periodicity: 1D

$$
\begin{array}{ll}
f[k] \leftrightarrow F[u] & \begin{array}{l}
\text { changing the sign of every other } \\
\text { sample of the DFT puts F[0] at } \\
\text { the center of the interval [0,M] }
\end{array} \\
f[k] \mathrm{e}^{j 2 \pi \pi_{0} k} M \leftrightarrow F\left[u-u_{0}\right] & \mathrm{u}^{\prime} \\
u_{0}=\frac{M}{2} \rightarrow \mathrm{e}^{j 2 \pi \frac{u_{0} k}{M}}=\mathrm{e}^{j 2 \pi \frac{M k}{2 M}}=\mathrm{e}^{j \pi k}=(-1)^{k} \\
(-1)^{k} f[k] \leftrightarrow F\left[u-\frac{M}{2}\right]
\end{array}
$$

It is more practical to have one complete period positioned in [0, M-1]

Periodicity in 2D

I 4 semiperiodi si incontrano ai vertici
I 4 semiperiodi si incontrano al centro

Periodicity

fft2

$0,127=1 / \mathrm{M}, 1 / \mathrm{N}$
fftshift(fft2)

Periodicity: 2D

Angle and phase spectra

$$
\begin{array}{ll}
F[u, v]=\mid F[u, v] e^{j \Phi[u, v]} & \\
|F[u, v]|=\left[\operatorname{Re}\{F[u, v]\}^{2}+\operatorname{Im}\{F[u, v]\}^{2}\right]^{1 / 2} & \text { modulus (amplitude spectrum) } \\
\Phi[u, v]=\arctan \left[\frac{\operatorname{Im}\{F[u, v]\}}{\operatorname{Re}\{F[u, v]\}}\right] & \text { phase } \\
P[u, v]=|F[u, v]|^{2} & \text { power spectrum }
\end{array}
$$

For a real function

$$
\begin{aligned}
& F[-u,-v]=F^{*}[u, v] \quad \text { conjugate symmetric with respect to the origin } \\
& |F[-u,-v]|=|F[u, v]| \\
& \Phi[-u,-v]=-\Phi[u, v]
\end{aligned}
$$

Translation and rotation

$$
\begin{aligned}
& f[k, l] e^{j 2 \pi\left(\frac{m}{M} k+\frac{n}{N} l\right)} \leftrightarrow F[u-m, v-l] \\
& f[k-m, l-n] \leftrightarrow F[u, v]^{-j 2 \pi\left(\frac{m}{M} k+\frac{n}{N} l\right)} \\
& \left\{\begin{array} { l }
{ k = r \operatorname { c o s } \vartheta } \\
{ l = r \operatorname { s i n } \vartheta }
\end{array} \quad \left\{\begin{array}{l}
u=\omega \cos \varphi \\
l=\omega \sin \varphi
\end{array}\right.\right. \\
& f\left[r, \vartheta+\vartheta_{0}\right] \leftrightarrow F\left[\omega, \varphi+\vartheta_{0}\right]
\end{aligned}
$$

Rotations in spatial domain correspond equal rotations in Fourier domain

DFT Properties: (5) Rotation

- Rotating $\mathrm{f}(\mathrm{x}, \mathrm{y})$ by θ rotates $\mathrm{F}(\mathrm{u}, \mathrm{v})$ by θ

mean value

$$
F[0,0]=\frac{1}{N M} \sum_{n=0}^{N-1} \sum_{m=0}^{M-1} f[n, m] \quad \text { DC coefficient }
$$

Separability

- The discrete two-dimensional Fourier transform of an image array is defined in series form as

$$
F[k, l]=\frac{1}{M N} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f[m, n] e^{-j 2 \pi\left(\frac{k}{M} m+\frac{l}{N} n\right)}
$$

- Inverse transform

$$
f[m, n]=\sum_{k=0}^{M-1} \sum_{=0}^{N-1} F[k, l] e^{j 2 \pi\left(\frac{k}{M} m+\frac{l}{N} n\right)}
$$

- Because the transform kernels are separable and symmetric, the two dimensional transforms can be computed as sequential row and column one-dimensional transforms.
- The basis functions of the transform are complex exponentials that may be decomposed into sine and cosine components.

2D DFT: summary

TABLE 4.1

Summary of some important properties of the 2-D Fourier transform.

Property	Expression(s)
Fourier transform	$F(u, v)=\frac{1}{M N} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) e^{-j 2 \pi(u x / M+v y / N)}$
Inverse Fourier transform	$f(x, y)=\sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u, v) e^{j 2 \pi(u x / M+v y / N)}$
Polar representation	$F(u, v)=\|F(u, v)\| e^{-j \phi(u, v)}$
Spectrum	$\|F(u, v)\|=\left[R^{2}(u, v)+I^{2}(u, v)\right]^{1 / 2}, \quad \begin{aligned} & R=\operatorname{Real}(F) \text { and } \\ & I=\operatorname{Imag}(F) \end{aligned}$
Phase angle	$\phi(u, v)=\tan ^{-1}\left[\frac{I(u, v)}{R(u, v)}\right]$
Power spectrum	$P(u, v)=\|F(u, v)\|^{2}$
Average value	$\bar{f}(x, y)=F(0,0)=\frac{1}{M N} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y)$
Translation	$\begin{aligned} & f(x, y) e^{i 2 \pi\left(u_{0} x / M+v_{0} y / N\right)} \Leftrightarrow F\left(u-u_{0}, v-v_{0}\right) \\ & f\left(x-x_{0}, y-y_{0}\right) \Leftrightarrow F(u, v) e^{-j 2 \pi\left(u u_{0} / M+v y_{0} / N\right)} \\ & \text { When } x_{0}=u_{0}=M / 2 \text { and } y_{0}=v_{0}=N / 2 \text {, then } \\ & f(x, y)(-1)^{x+y} \Leftrightarrow F(u-M / 2, v-N / 2) \\ & f(x-M / 2, y-N / 2) \Leftrightarrow F(u, v)(-1)^{u+v} \end{aligned}$

2D DFT: summary

Conjugate symmetry	$\begin{aligned} & F(u, v)=F^{*}(-u,-v) \\ & \|F(u, v)\|=\|F(-u,-v)\| \end{aligned}$
Differentiation	$\frac{\partial^{n} f(x, y)}{\partial x^{n}} \Leftrightarrow(j u)^{n} F(u, v)$
	$(-j x)^{n} f(x, y) \Leftrightarrow \frac{\partial^{n} F(u, v)}{\partial u^{n}}$
Laplacian	$\nabla^{2} f(x, y) \Leftrightarrow-\left(u^{2}+v^{2}\right) F(u, v)$
Distributivity	$\Im\left[f_{1}(x, y)+f_{2}(x, y)\right]=\Im\left[f_{1}(x, y)\right]+\Im\left[f_{2}(x, y)\right]$
	$\Im\left[f_{1}(x, y) \cdot f_{2}(x, y)\right] \neq \Im\left[f_{1}(x, y)\right] \cdot \Im\left[f_{2}(x, y)\right]$
Scaling	$a f(x, y) \Leftrightarrow a F(u, v), f(a x, b y) \Leftrightarrow \frac{1}{\|a b\|} F(u / a, v / b)$
Rotation	$\begin{aligned} & x=r \cos \theta \quad y=r \sin \theta \quad u=\omega \cos \varphi \quad v=\omega \sin \varphi \\ & f\left(r, \theta+\theta_{0}\right) \Leftrightarrow F\left(\omega, \varphi+\theta_{0}\right) \end{aligned}$
Periodicity	$\begin{aligned} & F(u, v)=F(u+M, v)=F(u, v+N)=F(u+M, v+N) \\ & f(x, y)=f(x+M, y)=f(x, y+N)=f(x+M, y+N) \end{aligned}$
Separability	See Eqs. (4.6-14) and (4.6-15). Separability implies that we can compute the 2-D transform of an image by first computing 1-D transforms along each row of the image, and then computing a 1-D transform along each column of this intermediate result. The reverse, columns and then rows, yields the same result.

2D DFT: summary

Property	Expression(s)
Computation of the inverse	$\frac{1}{M N} f^{*}(x, y)=\frac{1}{M N} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F^{*}(u, v) e^{-j 2 \pi(u x / M+v y / N)}$
Fourier transform using a forward transform algorithm	This equation indicates that inputting the function $F^{*}(u, v)$ into an algorithm designed to compute the forward transform (right side of the preceding equation) yields $f^{*}(x, y) / M N$. Taking the complex conjugate and multiplying this result by $M N$ gives the desired inverse.
Convolution ${ }^{\top}$	$f(x, y) * h(x, y)=\frac{1}{M N} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m, n) h(x-m, y-n)$
Correlation ${ }^{\dagger}$	$f(x, y) \circ h(x, y)=\frac{1}{M N} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f^{*}(m, n) h(x+m, y+n)$
Convolution theorem ${ }^{\text {T }}$	$\begin{aligned} & f(x, y) * h(x, y) \Leftrightarrow F(u, v) H(u, v) \\ & f(x, y) h(x, y) \Leftrightarrow F(u, v) * H(u, v) \end{aligned}$
Correlation theorem ${ }^{\text { }}$	$\begin{aligned} & f(x, y) \circ h(x, y) \Leftrightarrow F^{*}(u, v) H(u, v) ; \\ & f^{*}(x, y) h(x, y) \Leftrightarrow F(u, v) \circ H(u, v) \end{aligned}$

2D DFT: summary

Some useful FT pairs:

$$
\begin{array}{ll}
\text { Impulse } & \delta(x, y) \Leftrightarrow 1 \\
\text { Gaussian } & A \sqrt{2 \pi} \sigma e^{-2 \pi^{2} \sigma^{2}\left(x^{2}+y^{2}\right)} \Leftrightarrow A e^{-\left(u^{2}+v^{2}\right) / 2 \sigma^{2}} \\
\text { Rectangle } & \operatorname{rect}[a, b] \Leftrightarrow a b \frac{\sin (\pi u a)}{(\pi u a)} \frac{\sin (\pi v b)}{(\pi v b)} e^{-j \pi(u a+v b)} \\
\text { Cosine } & \cos \left(2 \pi u_{0} x+2 \pi v_{0} y\right) \Leftrightarrow \\
& \frac{1}{2}\left[\delta\left(u+u_{0}, v+v_{0}\right)+\delta\left(u-u_{0}, v-v_{0}\right)\right] \\
& \operatorname{sine} \\
& \sin \left(2 \pi u_{0} x+2 \pi v_{0} y\right) \Leftrightarrow \\
& j \frac{1}{2}\left[\delta\left(u+u_{0}, v+v_{0}\right)-\delta\left(u-u_{0}, v-v_{0}\right)\right]
\end{array}
$$

${ }^{\text { }}$ Assumes that functions have been extended by zero padding.

Magnitude and Phase of DFT

- What is more important?

magnitude

phase

Hint: use inverse DFT to reconstruct the image using magnitude or phase only information

Magnitude and Phase of DFT (cont'd)

Reconstructed image using magnitude only
(i.e., magnitude determines the contribution of each component!)

Reconstructed image using phase only (i.e., phase determines which components are present!)

Magnitude and Phase of DFT (cont'd)

Margherita Hack

log amplitude of the spectrum

Einstein

log amplitude of the spectrum

Examples

other formulations

2D Discrete Fourier Transform

- 2D Discrete Fourier Transform (DFT)

$$
\begin{aligned}
& \qquad \begin{aligned}
F[k, l] & =\frac{1}{M N} \sum_{n=0}^{M-1} \sum_{n=0}^{N-1} f[m, n] e^{-j 2 \pi\left(\frac{k}{M} m+\frac{l}{N} n\right)} \\
\text { where } \quad l & =0,1, \ldots, N-1 \\
k & =0,1, \ldots, M-1
\end{aligned}
\end{aligned}
$$

- Inverse DFT

$$
f[m, n]=\sum_{k=0}^{M-1} \sum_{==0}^{N-1} F[k, l] e^{j 2 \pi\left(\frac{k}{M} m+\frac{l}{N} n\right)}
$$

2D Discrete Fourier Transform

- It is also possible to define DFT as follows

$$
\begin{aligned}
& F[k, l]=\frac{1}{\sqrt{M N}} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f[m, n] e^{-j 2 \pi\left(\frac{k}{M} m+\frac{l}{N} n\right)} \\
& \text { where } \quad k=0,1, \ldots, M-1 \\
& l=0,1, \ldots, N-1
\end{aligned}
$$

- Inverse DFT

$$
f[m, n]=\frac{1}{\sqrt{M N}} \sum_{k=0}^{M-1} \sum_{l=0}^{N-1} F[k, l] e^{j 2 \pi\left(\frac{k}{M} m+\frac{l}{N} n\right)}
$$

2D Discrete Fourier Transform

- Or, as follows

$$
\begin{gathered}
F[k, l]=\sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f[m, n] e^{-j 2 \pi\left(\frac{k}{M} m+\frac{l}{N} n\right)} \\
\text { where } k=0,1, \ldots, M-1 \text { and } \quad l=0,1, \ldots, N-1
\end{gathered}
$$

- Inverse DFT

$$
f[m, n]=\frac{1}{M N} \sum_{k=0}^{M-1} \sum_{==0}^{N-1} F[k, l] e^{j 2 \pi\left(\frac{k}{M} m+\frac{l}{N} n\right)}
$$

2D DFT

- The discrete two-dimensional Fourier transform of an image array is defined in series form as

$$
\mathcal{H}(u, v)=\frac{1}{N} \sum_{j=0}^{N-1} \sum_{k=0}^{N-1} F(j, k) \exp \left\{\frac{-2 \pi i}{N}(u j+v k)\right\}
$$

- inverse transforrı

$$
F(j, k)=\frac{1}{N} \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} \mathcal{F}(u, v) \exp \left\{\frac{2 \pi i}{N}(u j+v k)\right\}
$$

2D DCT

Discrete Cosine Transform

2D DCT

- based on most common form for 1D DCT

$$
\begin{array}{ll}
C(u)=\alpha(u) \sum_{x=0}^{N-1} f(x) \cos \left[\frac{\pi(2 x+1) u}{2 N}\right], & \mathrm{u}, \mathrm{x}=0,1, \ldots, \mathrm{~N}-1 \\
f(x)=\sum_{u=0}^{N-1} \alpha(u) C(u) \cos \left[\frac{\pi(2 x+1) u}{2 N}\right], & \text { "mean" value } \\
\alpha(u)= \begin{cases}\sqrt{\frac{1}{N}} \quad \text { for } \quad u=0 & \text { for } \quad u \neq 0 .\end{cases} \\
C(u=0)=\sqrt{\frac{1}{2}} \sum_{x=0}^{N-1} f(x) &
\end{array}
$$

1D basis functions

Figure 1

Cosine basis functions are orthogonal

2D DCT

- Corresponding 2D formulation
direct $\quad C(u, v)=\alpha(u) \alpha(v) \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x, y) \cos \left[\frac{\pi(2 x+1) u}{2 N}\right] \cos \left[\frac{\pi(2 y+1) v}{2 N}\right]$,

$$
u, v=0,1, \ldots, N-1
$$

$$
\alpha(u)=\left\{\begin{array}{lll}
\sqrt{\frac{1}{N}} & \text { for } & u=0 \\
\sqrt{\frac{2}{N}} & \text { for } & u \neq 0
\end{array}\right.
$$

inverse $f(x, y)=\sum_{u=0}^{N-1} \sum_{v=0}^{N-1} \alpha(u) \alpha(v) C(u, v) \cos \left[\frac{\pi(2 x+1) u}{2 N}\right] \cos \left[\frac{\pi(2 y+1) v}{2 N}\right]$,

2D basis functions

- The 2-D basis functions can be generated by multiplying the horizontally oriented 1-D basis functions (shown in Figure 1) with vertically oriented set of the same functions.
- The basis functions for $N=8$ are shown in Figure 2.
- The basis functions exhibit a progressive increase in frequency both in the vertical and horizontal direction.
- The top left basis function assumes a constant value and is referred to as the $D C$ coefficient.

2D DCT basis functions

Figure 2

Separability

The inverse of a multi-dimensional DCT is just a separable product of the inverse(s) of the corresponding one-dimensional DCT , e.g. the one-dimensional inverses applied along one dimension at a time

Separability

- Symmetry
- Another look at the row and column operations reveals that these operations are functionally identical. Such a transformation is called a symmetric transformation.
- A separable and symmetric transform can be expressed in the form

$$
T=A f A
$$

- where A is a $N x N$ symmetric transformation matrix which entries $a(i, j)$ are given by

$$
a(i, j)=\alpha(j) \sum_{j=0}^{N-1} \cos \left[\frac{\pi(2 j+1) i}{2 N}\right]
$$

- This is an extremely useful property since it implies that the transformation matrix can be pre computed offline and then applied to the image thereby providing orders of magnitude improvement in computation efficiency.

Computational efficiency

- Computational efficiency
- Inverse transform

$$
f=A^{-1} T A^{-1} .
$$

- DCT basis functions are orthogonal. Thus, the inverse transformation matrix of A is equal to its transpose i.e. $A^{-1}=A^{T}$.
- This property renders some reduction in the pre-computation complexity.

Block-based implementation
 Basis function

Block-based transform
Block size
$\mathrm{N}=\mathrm{M}=8$
The source data (8 x 8) is transformed to a linear combination of these 64 frequency squares.

Energy compaction

(a)

(b)

Appendix

- Eulero's formula

$$
\begin{aligned}
& A(j, k ; u, v)=\exp \left\{\frac{-2 \pi i}{N}(u j+v k)\right\}=\cos \left\{\frac{2 \pi}{N}(u j+v k)\right\}-i \sin \left\{\frac{2 \pi}{N}(u j+v k)\right\} \\
& B(j, k ; u, v)=\exp \left\{\frac{2 \pi i}{N}(u j+v k)\right\}=\cos \left\{\frac{2 \pi}{N}(u j+v k)\right\}+i \sin \left\{\frac{2 \pi}{N}(u j+v k)\right\}
\end{aligned}
$$

